• 제목/요약/키워드: Complex power

검색결과 2,171건 처리시간 0.031초

21톤급 휠 굴착기용 트랜스미션의 기어 트레인에 대한 강도 해석 (Strength Analysis of Complex Gear Train for Transmission of 21-Ton Grade Wheel Excavator)

  • 이준희;배명호;조연상
    • Tribology and Lubricants
    • /
    • 제38권5호
    • /
    • pp.179-184
    • /
    • 2022
  • The power train of transmission for 21-ton grade wheel excavator makes use of a complex gear train composed of a planetary and helical gear system to drive the wheel excavator by transmitting power to the axle. The complex gear train with a shift mode is an important part of the transmission because of strength problems in an extreme environment. To calculate the specifications of the complex gear train and analyze the gear bending and compressive stresses of the complex gear train, this study analyzes gear bending and compressive stresses accurately for the optimal design of the complex gear train with respect to cost and reliability. In this article, the gear bending and compressive stresses of the complex gear train are calculated using the Lewes and Hertz equation. Evaluating the results with the data of the allowable bending and compressive stress from the stress and number of cycles curves of the gears verified the calculated specifications of the complex gear train. A computer structure analysis is performed with the 3D model of the planetary and helical gears to analyze the structure strength of the complex gear train. The results demonstrate that the durability and strength of the complex gear train are safe, because the safety factors of the bending and compressive stresses are more than 1.0.

Direct Power Control of a DFIG in Wind Turbines to Improve Dynamic Responses

  • Jou, Sung-Tak;Lee, Sol-Bin;Park, Yong-Bae;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제9권5호
    • /
    • pp.781-790
    • /
    • 2009
  • This paper presents an implementation of a direct active and reactive power control for a doubly fed induction generator (DFIG), which is applied to a wind generation system as an alternative to the classical field-oriented control (FOC). The FOC has a complex control structure that consists of a current controller, a power controller and frame transformations. The performance of the FOC depends highly on parameter variations of the rotor and stator resistances and the inductances. The proposed direct power control (DPC) method produces a fast and robust power response without the need of complex structure and algorithms. One drawback, however, is its high power ripple during a steady state. In this paper, active and reactive power controllers and space-vector modulation (SVM) are combined to replace hysteresis controllers used in the original DPC drive, resulting in a fixed switching frequency of the power converter. Simulation results with the FOC and DPC for a 3kW DFIG are given and discussed, and the experimental results of a test involving identical machines are presented to illustrate the feasibility of the proposed control strategy.

지게차용 기계유압식 무단변속기의 기어류에 대한 강도해석 (The Strength Analysis of Gears on Hydro-Mechanical Continuously Variable Transmission for Forklift)

  • 배명호;배태열;최성광
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권4호
    • /
    • pp.45-51
    • /
    • 2016
  • The power train of a hydro-mechanical, continuously variable transmission for forklifts makes use of hydro-static units, hydraulic multi-wet disc brakes & clutches, and complex helical & planetary gears. The complex helical & planetary gears are very important parts of the transmission because of a strength problem. In the present study, we calculated the specifications of the complex helical & planetary gear train, and analyzed the gear bending and compressive stresses of the gears. It is necessary to analyze the gear bending and compressive stresses thoroughly for optimal design of the complex helical & planetary gears with respect to cost and reliability. In this paper, we analyze the actual gear bending and compressive stresses of complex helical & planetary gears using the Lewes & Hertz equation, and we also verify the calculated specifications of the complex helical & planetary gears by evaluating the results of the data of allowable bending and compressive stress using the Stress vrs Number of Cycles curves of gears.

DESIGN AND FABRICATION OF THE BEAM POSITION MONITOR FOR THE PEFP LINAC

  • Kwon, Hyeok-Jung;Kim, Han-Sung;Seol, Kyung-Tae;Ryu, Jin-Yeong;Jang, Ji-Ho;Cho, Yong-Sub
    • Nuclear Engineering and Technology
    • /
    • 제45권4호
    • /
    • pp.523-528
    • /
    • 2013
  • The beam position monitor (BPM) is an essential component for the PEFP 100-MeV linac's commissioning. A prototype stripline-type linac BPM was designedfor this purpose. The electrode aperture is 20 mm in diameter, and the electrode is 25 mm long, so it can be installed between Drift Tube Linac (DTL)101 and DTL102, which is the shortest distance. One end of the electrode is connected to the Sub Miniature Type A (SMA) feed through for signal measurement, and the other end is terminated as a short. The signal amplitude of the fundamental component was calculated and compared with that of the second harmonic component. The designed BPM was fabricated and a low-power RF test was conducted. In this paper, the design, fabrication and low power test of the BPM for the PEFP linac are presented.

옥외 관측을 통한 EVA, POE PV모듈의 열화 연구 (Outdoor Testing and Degradation of EVA and POE Encapsulated Photovoltaic Modules)

  • 김제하
    • 한국전기전자재료학회논문지
    • /
    • 제29권12호
    • /
    • pp.847-852
    • /
    • 2016
  • Using both EVA and POE encapsulants, we fabricated polycrystalline Si PV modules and performed a set of reliability tests of PID, DH, TC, and Complex prior to outdoor installation. The power output with temperatures and insolation as well as I-V characteristics had been monitored under outdoor environments for 18 months. In the entire period, the total power of 3,576 kWh from POE PV modules was observed larger than 3,449 kWh from EVA PV modules by 3.5%. All the PV modules showed a 5.6~9.2% drop in the conversion efficiency. As for the solar power generation, the PV modules performed through PID, TC test revealed distinct difference in between EVA and POE for which the POE PV module produced more power by +11.4% and +6.6%, respectively, as measured in the 18th month. In addition, POE was proved to protect better the solar cells under PID influence.

실시간 전력계통 해석용 시뮬레이터 기술 (A Real-T6me Simulator for Power System Studies)

  • 차승태;조강욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.1050-1052
    • /
    • 1998
  • As the power systems evolve, they are incorporating increasingly complex control and protection functions. Due to this, utilities are relying more and more on real-time simulators to study complex system interaction problems. This paper addresses some key questions regarding the needs of such simulators and their characteristic features/requirements. In countries like France and Canada, large scale simulators are developed and placed in practical use, and in others are now under development. Following this background, three typical simulators(ARENE, RTDS/HYPERSIM) will be examined focusing on the purpose, technology and experiences in a real-time simulator. Discussion will be extended to the future issues and potentials of the power system simulation.

  • PDF

A Low-area and Low-power 512-point Pipelined FFT Design Using Radix-24-23 for OFDM Applications

  • Yu, Jian;Cho, Kyung-Ju
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권5호
    • /
    • pp.475-480
    • /
    • 2018
  • In OFDM-based systems, FFT is a critical component since it occupies large area and consumes more power. In this paper, we present a low hardware-cost and low power 512-point pipelined FFT design method for OFDM applications. To reduce the number of twiddle factors and to choose simple design architecture, the radix-$2^4-2^3$ algorithm are exploited. For twiddle factor multiplication, we propose a new canonical signed digit (CSD) complex multiplier design method to minimize the hardware-cost. In hardware implementation with Intel FPGA, the proposed FFT design achieves more than about 28% reduction in gate count and 18% reduction in power consumption compared to the previous approaches.

해상풍력 실증 단지 육지 연계시 계통 영향 평가를 위한 안정도 해석에 관한 연구 (Study on Stability Analysis for Systematic Impact Assessment at the Cooperation of Land in Offshore Wind Power Generation Demonstration Complex)

  • 박상호;김건중;한상욱
    • 전기학회논문지P
    • /
    • 제66권4호
    • /
    • pp.151-157
    • /
    • 2017
  • In this paper, it is the result of analysis of the stability by power system analysis about the influence on the power system when the southwest - offshore wind power demonstration complex is constructed to 60MW and it is linked with the onshore power system. Considering the position of the wind turbine actually installed and the length of the cooperating line, we modeled the wind generators, offshore substation and the turbine step-up transformer. Changes of voltage when internal and external faults occurred is analyzed and the reactive power demand according to the amount of electricity generation is derived. And also phase angle stability and frequency is observed through a transient analysis. This paper clarify that there is no problem in the system when only offshore wind power is linked with the grid and try to present the reactive power amount necessary for maintaining the voltage of the point of cooperation appropriately.

풍력발전용 피치 드라이브 시스템의 복합 유성기어류에 대한 피로 강도해석 (Fatigue Strength Analysis of Complex Planetary Gear Train of the Pitch Drive System for Wind Turbines)

  • 김광민;배명호;조연상
    • Tribology and Lubricants
    • /
    • 제37권2호
    • /
    • pp.48-53
    • /
    • 2021
  • Wind energy is considered as the most competitive energy source in terms of power generation cost and efficiency. The power train of the pitch drive for a wind turbine uses a 3-stage complex planetary gear system in being developed locally. A gear train of the pitch drive consists of an electric or hydraulic motor and a planetary decelerator, which optimizes the pitch angle of the blade for wind generators in response to the change in wind speed. However, it is prone to many problems, such as excessive repair costs in case of failure. Complex planetary gears are very important parts of a pitch drive system because of strength problem. When gears are designed for the power train of a pitch drive, it is necessary to analyze the fatigue strength of gears. While calculating the specifications of the complex planetary gears along with the bending and compressive stresses of the gears, it is necessary to analyze the fatigue strength of gears to obtain an optimal design of the complex planetary gears in terms of cost and reliability. In this study, the specifications of planetary gears are calculated using a self-developed gear design program. The actual gear bending and compressive stresses of the planetary gear system were analyzed using the Lewes and Hertz equation. Additionally, the calculated specifications of the complex planetary gears were verified by evaluating the results from the Stress - No. of cycles curves of gears.

SEA에 기초를 둔 손실계수를 이용한 결합계수의 평가 (Coupling loss factor evaluation using loss factor based on the SEA)

  • 안병하;황선웅;김영종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.568-571
    • /
    • 1997
  • The overall aim of this paper is to determine coupling loss factor using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it is possible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one directional power flow between two sub structures. Using these conditions, it is possible to find the coupling loss factor equation. The comparison between theory of power transmission on conjunction and above equation, show a good agreement in simple beam structure. To check the effectiveness of above equation, it was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure.

  • PDF