• Title/Summary/Keyword: Complex modulation

Search Result 235, Processing Time 0.025 seconds

Implementation of manual/automatic complex redundancy control method for modulation system of a paging earth station in reduntancy structure (이중화 무선호출 지구국 변조부 시스템의 수/자동 복합 이중화 제어 방법 구현)

  • 박승창;김영민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.1
    • /
    • pp.21-29
    • /
    • 1997
  • This paper describes implementation contents contents of manual/automatic complex redundancy control mothod for control of a modulation system of a Paging earth station in redundancy stracture. The existed redundancy control method usually is a automatic local control method in which the redundancy switching, including display or alarm beeping through operation of display devices or audio devices, is performed by the co-action of components or modules when the abnormal status is occurred in a modulation system. However, this method introduced in here is designed to enable use of three control modes;1) Manual mode by an operator, 2) Auto-remote mode by the Network Maagement System, through implementation of the redundancy control system composed of the redundancy control board and the redundancy switching circuit.

  • PDF

Modified Unipolar Carrier-Based PWM Strategy for Three-Level Neutral-Point-Clamped Voltage Source Inverters

  • Srirattanawichaikul, Watcharin;Premrudeepreechacharn, Suttichai;Kumsuwan, Yuttana
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.489-500
    • /
    • 2014
  • This paper presents a simple modified unipolar carrier-based pulsewidth modulation (CB-PWM) strategy for the three-level neutral-point-clamped (NPC) voltage source inverter (VSI). Analytical expressions for the relationship between modulation reference signals and output voltages are derived. The proposed modulation technique for the three-level NPC VSI includes the maximum and minimum of the three-phase sinusoidal reference voltages with zero-sequence voltage injection concept. The proposed modified CB-PWM strategy incorporates a novel method that requires only of one triangular carrier wave for generate the gating pulses in three-level NPC VSI. It has the advantages of being simplifying the algorithm with no need of complex two/multi-carrier pulsewidth modulation or space vector modulation (SVM) and it's also simple to implement. The possibility of the proposed CB-PWM technique has been verified though computer simulation and experimental results.

A Novel Self-Learning Filters for Automatic Modulation Classification Based on Deep Residual Shrinking Networks

  • Ming Li;Xiaolin Zhang;Rongchen Sun;Zengmao Chen;Chenghao Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1743-1758
    • /
    • 2023
  • Automatic modulation classification is a critical algorithm for non-cooperative communication systems. This paper addresses the challenging problem of closed-set and open-set signal modulation classification in complex channels. We propose a novel approach that incorporates a self-learning filter and center-loss in Deep Residual Shrinking Networks (DRSN) for closed-set modulation classification, and the Opendistance method for open-set modulation classification. Our approach achieves better performance than existing methods in both closed-set and open-set recognition. In closed-set recognition, the self-learning filter and center-loss combination improves recognition performance, with a maximum accuracy of over 92.18%. In open-set recognition, the use of a self-learning filter and center-loss provide an effective feature vector for open-set recognition, and the Opendistance method outperforms SoftMax and OpenMax in F1 scores and mean average accuracy under high openness. Overall, our proposed approach demonstrates promising results for automatic modulation classification, providing better performance in non-cooperative communication systems.

Fundamental Frequency Estimation in Power Systems Using Complex Prony Analysis

  • Nam, Soon-Ryul;Lee, Dong-Gyu;Kang, Sang-Hee;Ahn, Seon-Ju;Choi, Joon-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.154-160
    • /
    • 2011
  • A new algorithm for estimating the fundamental frequency of power system signals is presented. The proposed algorithm consists of two stages: orthogonal decomposition and a complex Prony analysis. First, the input signal is decomposed into two orthogonal components using cosine and sine filters, and a variable window is adapted to enhance the performance of eliminating harmonics. Then a complex Prony analysis that is proposed in this paper is used to estimate the fundamental frequency by approximating the cosine-filtered and sine-filtered signals simultaneously. To evaluate the performance of the algorithm, amplitude modulation and harmonic tests were performed using simulated test signals. The performance of the algorithm was also assessed for dynamic conditions on a single-machine power system. The Electromagnetic Transients Program was used to generate voltage signals for a load increase and single phase-to-ground faults. The performance evaluation showed that the proposed algorithm accurately estimated the fundamental frequency of power system signals in the presence of amplitude modulation and harmonics.

ON THE COMPLEX VARIABILITY OF THE SUPERORBITAL MODULATION PERIOD OF LMC X-4

  • HU, CHIN-PING;LIN, CHING-PING;CHOU, YI;YANG, TING-CHANG;SU, YI-HAO;HSIEH, HUNG-EN;CHUANG, PO-SHENG;LIAO, NAI-HUI
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.595-597
    • /
    • 2015
  • LMC X-4 is an eclipsing high-mass X-ray binary exhibiting a superorbital modulation with a period of ~ 30:5 days. We present a detailed study of the variations of the superorbital modulation period with a time baseline of ~ 18 years. The period determined in the light curve collected by the Monitor of All-sky X-ray Image (MAXI) significantly deviates from that observed by the All Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE). Using the data collected by RXTE/ASM, MAXI, and the Burst Alert Telescope (BAT) onboard Swift, we found a significant period derivative, $\dot{P}=(2.08{\pm}0.12){\times}10^{-5}$. Furthermore, the O{C residual shows complex short-term variations indicating that the superorbital modulation of LMC X-4 exhibits complicated unstable behaviors. In addition, we used archive data collected by the Proportional Counter Array (PCA) on RXTE to estimate the orbital and spin parameters. The detected pulse frequencies obtained in small time segments were fitted with a circular orbital Doppler shift model. In addition to orbital parameters and spin frequency for each observation, we found a spin frequency derivative of $\dot{v}=(6.482{\pm}0.011){\times}10^{-13}Hz{\cdot}s^{-1}$. More precise orbital and spin parameters will be evaluated by the pulse arrival time delay technique in the future.

Mathematical Modeling of VSB-Based Digital Television Systems

  • Kim, Hyoung-Nam;Lee, Yong-Tae;Kim, Seung-Won
    • ETRI Journal
    • /
    • v.25 no.1
    • /
    • pp.9-18
    • /
    • 2003
  • We mathematically analyze the passband vestigial sideband (VSB) system for the Advanced Television Systems Committee (ATSC) digital television standard and present a baseband-equivalent VSB model. The obtained baseband VSB model is represented by convolution of the transmission signal (before modulation) and the baseband equivalent of the complex VSB channel. Due to the operation of the physical channel as an RF passband and the asymmetrical property of VSB modulation, it is necessary to use a complex model. However, the passband channel may be reduced to an equivalent baseband. We show how to apply standard channel model information such as delay, gain, and phase for multiple signal paths to compute both the channel frequency response with a given carrier frequency and the resulting demodulated impulse response. Simulation results illustrate that the baseband VSB model is equivalent to the passband VSB model.

  • PDF

A Complex Escalator Equalizer for Quadrature Modulation Systems (직교변조 시스템을 위한 복소 에스컬레이터 Equalizer)

  • 김남용
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.7
    • /
    • pp.47-53
    • /
    • 2004
  • In this paper we introduce a complex escalator (ESC) structure-Equalizer and investigate its performance in complex channels in QPSK undulation systems. The proposed complex equalizer has the complete orthogonalization property and is independent of eigenvalue spread ratio (ESR) of channel. The proposed complex ESC equalizer shows as 7 times faster convergence speed as that of the conventional complex TDL equalizer algorithms in a complex channel model for QPSK systems.

Design and Fabrication of CLYC-Based Rotational Modulation Collimator (RMC) System for Gamma-Ray/Neutron Dual-Particle Imager

  • Kim, Hyun Suk;Lee, Jooyub;Choi, Sanghun;Bang, Young-bong;Ye, Sung-Joon;Kim, Geehyun
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.112-119
    • /
    • 2021
  • Background: This work aims to develop a new imaging system based on a pulse shape discrimination-capable Cs2LiYCl6:Ce (CLYC) scintillation detector combined with the rotational modulation collimator (RMC) technique for dual-particle imaging. Materials and Methods: In this study, a CLYC-based RMC system was designed based on Monte Carlo simulations, and a prototype was fabricated. Therein, a rotation control system was developed to rotate the RMC unit precisely, and a graphical user interface-based software was also developed to operate the data acquisition with RMC rotation. The RMC system was developed to allow combining various types of collimator masks and detectors interchangeably, making the imaging system more versatile for various applications and conditions. Results and Discussion: Operational performance of the fabricated system was studied by checking the accuracy and precision of the collimator rotation and obtaining modulation patterns from a gamma-ray source repeatedly. Conclusion: The prototype RMC system showed reliability in its mechanical properties and reproducibility in the acquisition of modulation patterns, and it will be further investigated for its dual-particle imaging capability with various complex radioactive source conditions.

Design of New Differential Space-Time Modulation Using Real Precoder (실수 선부호기를 이용한 새로운 차등 시공간 변조 설계)

  • Kim, Hong-Jung;Kim, Jun-Ho;Kim, Cheol-Sung;Jung, Tae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.1-7
    • /
    • 2012
  • The conventional Zhu's differential space-time modulation(DSTM) based on quasi-orthogonal design adopted a complex precoder in order to allow an independent joint detection of two complex symbols without any channel informations at a receiver. In this paper, by simply replacing the complex precoder used in Zhu's DSTM with a real precoder, a new DSTM is presented for four transmit antennas. The real precoder enables the receiver to decode two real symbols pair separately, and thus the new DSTM has greatly reduced decoding complexity compared to the Zhu's DSTM. By computer simulation results, the proposed scheme is shown to exhibit almost identical or improved error performance compared to the existing DSTMs.

Automatic Algorithm for Extracting the Jet Engine Information from Radar Target Signatures of Aircraft Targets (항공기 표적의 레이더 반사 신호에서 제트엔진 정보를 추출하기 위한 자동화 알고리즘)

  • Yang, Woo-Yong;Park, Ji-Hoon;Bae, Jun-Woo;Kang, Seong-Cheol;Kim, Chan-Hong;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.690-699
    • /
    • 2014
  • Jet engine modulation(JEM) is a technique used to identify the jet engine type from the radar target signature modulated by periodic rotation of the jet engine mounted on the aircraft target. As a new approach of JEM, this paper proposes an automatic algorithm for extracting the jet engine information. First, the rotation period of the jet engine is yielded from auto-correlation of the JEM signal preprocessed by complex empirical mode decomposition(CEMD). Then, the final blade number is estimated by introducing the DM(Divisor-Multiplier) rule and the 'Scoring' concept into JEM spectral analysis. Application results of the simulated and measured JEM signals demonstrated that the proposed algorithm is effective in accurate and automatic extraction of the jet engine information.