• 제목/요약/키워드: Complex modal analysis method

검색결과 116건 처리시간 0.023초

복잡한 형상의 강체 스핀들과 유연축을 고려한 HDD 디스크-스핀들 계의 고유진동 유한요소해석 (Finite Element Analysis of Vibration of HDD Disk-Spindle System with Rigid Complex Spindle and Flexible Shaft)

  • 이상훈;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.784-789
    • /
    • 2000
  • Equations of motion are derived and solved using the finite element method substructure synthesis for the disk-spindle system with rigid spindle and flexible shaft. The disk is modeled as a flexible spinning disk by Kirchhoff plate theory and von Karman nonlinear strain. The spindle supporting the flexible disk is modeled as a rigid body to consider its complex geometry. The stationary shaft supporting the rotating disk-spindle-bearing system is modeled by Euler beam, and the ball bearings are modeled as the stiffness matrix with 5 degrees of freedom. Developed theory is applied to analyze the vibration characteristics of a 3.5" HDD and a 2.5" HDD, respectively, and modal tests are performed to verify the simulation results. This paper shows that the developed theory can be effectively applied to the rotating disk-spindle system with the spindle of complex shape.

  • PDF

복수의 동적하중을 받는 바닥판 구조물의 응답스펙트럼 해석 (Response Spectrum Analysis of Floor Structure Subjected to Group Dynamic Loads)

  • 김태호;한덕전
    • 한국공간구조학회논문집
    • /
    • 제8권1호
    • /
    • pp.57-67
    • /
    • 2008
  • 건축구조물의 응답스펙트럼 해석법은 주로 내진설계를 위하여 많이 사용되고 있고 시간이력 해석법은 기계, 설비, 사람에 의한 하중 등이 건축물에 가해지는 경우에 많이 사용되고 있다. 응답스펙트럼 해석법과 시간이력해석법을 비교해 보면 시간이력 해석법은 복잡하고 분석이 어려우며 해석에 시간을 많이 필요로 하고 구조물이 복잡해질 경우에는 해석이 어려운 경우도 있다. 본 연구에서는 응답스펙트럼해석법을 이용하여 기계나 사람에 의한 하중을 받는 건축물 바닥판의 연직응답을 구하고자 한다. 이를 위하여 모드조합에서는 CQC기법을 적용하였으며, 사람의 활동을 중심으로 하중간의 상관관계를 분석하여 해석에 적용하였다. 제안방법은 시간이력해석결과와도 비교하였으며 하중간의 상관계수는 복수의 하중을 받는 바닥판구조물의 응답스펙트럼 해석에 반드시 고려해야 하는 결과를 얻었다.

  • PDF

기여도 분석법을 이용한 자동차 브레이크 시스템의 스퀼 소음 예측 (The Prediction of Brake Corner Module Squeal Noise Using Participation Factor Analysis)

  • 이종기;임현석;김희용;백재욱
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1074-1080
    • /
    • 2009
  • A method for determining the geometric stability characteristics of a brake corner module (BCM) is presented. Since disc brake "squeal" noise typically occurs at unstable resonant frequencies of a system, the likelihood of disc brake squeal for a particular design can be determined. Finite element methods are used to derive complex eigenvalue for a brake corner module. Some unstable modes calculated by finite element methods correspond to squeal noise data. Through kinetic energy participation analysis for each part of BCM, we can efficiently predict squeal noise data.

응답스펙트럼 해석법을 이용한 건축 구조물의 바닥진동해석 (The Estimation of the Floor Vibration in Structure for Application of Response Spectrum Analysis Method)

  • 이동근;김태호
    • 한국지진공학회논문집
    • /
    • 제2권4호
    • /
    • pp.169-178
    • /
    • 1998
  • 일반적으로 응답스펙트럼 해석법은 지지해석에 널리 쓰이고 있지만 동적하중에 의한 구조물의 진동해석은 주로 시간이력해석에 의존한다. 그러나 시간이력해석법은 응답스펙트럼 해석법에 비하여 복잡하며 어렵고 또한 시간이 많이 소요된다 따라서본 논문에서는 응답스펙트럼 해석법을 이용하여 구조물의 연직 최대 응답을 예상하는 방법을 연구하였다 이를 위하여 우선 지지해석에서 응답스펙트럼 해석법과 시간이력해석법에 의하여 구조물의 최대응답을 구하여 비교하였으며 동적하중에 대한 응답스펙트럼 해석을 수행하는 과정을 나타내었다. 마지막으로 제안된 방법과 시간이력해석에 의한 결과를 비교하였다.

  • PDF

Random Vibration Analysis of Nonlinear Structure System using Perturbation Method

  • Moon, Byung-Young;Kang, Beom-Soo;Kang, Gyung-Ju
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.243-250
    • /
    • 2001
  • Industrial machines are sometimes exposed to the danger of earthquake. In the design of a mechanical system, this factor should be accounted for from the viewpoint of reliability. A method to analyze a complex nonlinear structure system under random excitation is proposed. First, the actual random excitation, such as earthquake, is approximated to the corresponding Gaussian process far the statistical analysis. The modal equations of overall system are expanded sequentially. Then, the perturbed equations are synthesized into the overall system and solved in probabilistic way. Several statistical properties of a random process that are of interest in random vibration applications are reviewed in accordance with nonlinear stochastic problem. The obtained statistical properties of the nonlinear random vibration are evaluated in each substructure. Comparing with the results of the numerical simulation proved the efficiency of the proposed method.

  • PDF

Damage detection in beam-like structures using deflections obtained by modal flexibility matrices

  • Koo, Ki-Young;Lee, Jong-Jae;Yun, Chung-Bang;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • 제4권5호
    • /
    • pp.605-628
    • /
    • 2008
  • In bridge structures, damage may induce an additional deflection which may naturally contain essential information about the damage. However, inverse mapping from the damage-induced deflection to the actual damage location and severity is generally complex, particularly for statically indeterminate systems. In this paper, a new load concept, called the positive-bending-inspection-load (PBIL) is proposed to construct a simple inverse mapping from the damage-induced deflection to the actual damage location. A PBIL for an inspection region is defined as a load or a system of loads which guarantees the bending moment to be positive in the inspection region. From the theoretical investigations, it was proven that the damage-induced chord-wise deflection (DI-CD) has the maximum value with the abrupt change in its slope at the damage location under a PBIL. Hence, a novel damage localization method is proposed based on the DI-CD under a PBIL. The procedure may be summarized as: (1) identification of the modal flexibility matrices from acceleration measurements, (2) design for a PBIL for an inspection region of interest in a structure, (3) calculation of the chord-wise deflections for the PBIL using the modal flexibility matrices, and (4) damage localization by finding the location with the maximum DI-CD with the abrupt change in its slope within the inspection region. Procedures from (2)-(4) can be repeated for several inspection regions to cover the whole structure complementarily. Numerical verification studies were carried out on a simply supported beam and a three-span continuous beam model. Experimental verification study was also carried out on a two-span continuous beam structure with a steel box-girder. It was found that the proposed method can identify the damage existence and damage location for small damage cases with narrow cuts at the bottom flange.

점탄성 감쇠기가 설치된 구조물의해석방법에 관한 연구 (A comparative study on the methods for analyses of viscoelastically damped structures)

  • 김진구
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.135-142
    • /
    • 1999
  • Although the vibration control effects of viscoelastic dampers in building structures have been well proved by numerous theoretical and practical examples it is difficult to find an outstanding method for analysis of viscoelastically damped structures satisfying both exactness and efficiency. Thus in this study four analysis methods for viscoelastically damped structures that are currently used or can be applied for the those system are speculated and compared to provide bass for developing a better method for analysis of viscoelastically damped structures. The seismic response time history inter-story drfts and analysis time recorded by computer simulation of four different methods are compared. Among these methods complex modal superposition approach turns out to be ecomomic and accurate procedure.

  • PDF

루츠타입 진공펌프 동특성의 해석적 평가 (Analytical Evaluation of Rotor Dynamic Characteristic of Roots Type Vacuum Pump)

  • 이종명;김용휘;하정민;구동식;최병근
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1112-1119
    • /
    • 2011
  • The goal of this study is the stability evaluation of a vacuum pump through modal test and rotor dynamics. Roots type vacuum pump, which is a dry vacuum pump, is necessary for the manufacturing process of the semiconductor and the display. Eigenvalue was solved by the finite-element method(FEM) using 2D and 3D models, then the modal test result was compared with the FEM result. According to the comparison, the analysis result using the 2D was more accurate than the 3D model. Therefore, rotor dynamics was performed by the 2D model. Campbell diagram and root-locus maps, which were calculated by complex-eigenvalue analysis, were used to evaluate the stability of the rotors of the vacuum pump. And displacement solved by unbalance response analysis was compared with the minimum clearance between two rotors of the vacuum pump. Thus, the vacuum pump is assumed operated under steady state through the evaluation of the rotor dynamics.

수치 해석을 통한 자기 베어링 시스템의 모델링에 관한 연구 (A Study on Modeling for the Magnetic Bearing System by Numerical Analysis)

  • 심성효;최명수;김창화;문덕홍;양주호
    • 동력기계공학회지
    • /
    • 제5권4호
    • /
    • pp.53-60
    • /
    • 2001
  • This paper considers a modeling for the MIMO magnetic bearing system. The rotor is flexible and has a complex shape. To obtain the nominal plant transfer functions, we perform a numerical analysis by using the finite element method(F.E.M.) for the rotor's dynamics, and make a nominal model by reducing the modes from the results. And, we have experimented on the frequency response by a closed-loop identification method, and compared it with the simulation's result on the closed-loop control system.

  • PDF

Hybrid machine learning with mode shape assessment for damage identification of plates

  • Pei Yi Siow;Zhi Chao Ong;Shin Yee Khoo;Kok-Sing Lim;Bee Teng Chew
    • Smart Structures and Systems
    • /
    • 제31권5호
    • /
    • pp.485-500
    • /
    • 2023
  • Machine learning-based structural health monitoring (ML-based SHM) methods are researched extensively in the recent decade due to the availability of advanced information and sensing technology. ML methods are well-known for their pattern recognition capability for complex problems. However, the main obstacle of ML-based SHM is that it often requires pre-collected historical data for model training. In most actual scenarios, damage presence can be detected using the unsupervised learning method through anomaly detection, but to further identify the damage types would require prior knowledge or historical events as references. This creates the cold-start problem, especially for new and unobserved structures. Modal-based methods identify damages based on the changes in the structural global properties but often require dense measurements for accurate results. Therefore, a two-stage hybrid modal-machine learning damage detection scheme is proposed. The first stage detects damage presence using Principal Component Analysis-Frequency Response Function (PCA-FRF) in an unsupervised manner, whereas the second stage further identifies the damage. To solve the cold-start problem, mode shape assessment using the first mode is initiated when no trained model is available yet in the second stage. The damage identified by the modal-based method would be stored for future training. This work highlights the performance of the scheme in alleviating the cold-start issue as it transitions through different phases, starting from zero damage sample available. Results showed that single and multiple damages can be identified at an acceptable accuracy level even when training samples are limited.