• Title/Summary/Keyword: Complex impedance

Search Result 280, Processing Time 0.031 seconds

Impedance spectroscopy for lifetime analysis of OLED

  • Yoon, Chul-Oh;Kim, Hyun-Chul;Yi, Seok-Kyung;Kong, Ung-Gul;Lee, Nam-Heon;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.137-140
    • /
    • 2002
  • The frequency response analysis of complex impedance spectra using small perturbation ac impedance spectroscopy is an informative method of OLED performance characterization and lifetime analysis. Using simple RC equivalent circuit mode,l macroscopic nonliniear transport properties of semiconductive emission/transport layers can be analyzed and parameterized. We present the bias voltage dependence and aging effect in impedance spectra measured from an ITO/CuPC/TPD/$Alq_3$/LiF/Al OLED device, and discuss possible failure mechanism based on impedance model parameters.

  • PDF

Temperature-dependent dielectric relaxation in ITO/Alq3/Al organic light-emitting diodes

  • Ahn, Joonho;Kim, Tae Wan;Lee, Won Jae
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.163-165
    • /
    • 2012
  • Impedance spectroscopy informs electrical properties of materials as accumulated charges, contact status between electrode and organic materials. We carried out impedance spectroscopy of organic light-emitting diodes as ITO/Alq3(60 nm)/Al on temperatures from 10 K to 300 K. The result described Z'-Z" plot, cole-cole plot and dielectric relaxation time τ. Z'-Z" plot means that real and imaginary part of materials in organic and electrode by frequencies and temperature. Z' as real part of impedance by applied frequency depending on temperature shows the plateau in low frequency region as Rs+ Rp and over 100 kHz in high frequency region as Rs. Cole-cole plot shows resistance of materials in equivalent circuit of the device by temperatures. And equivalent circuit and dielectric relaxation could be accomplished by using the complex impedance analysis.

Complex Capacitance Analysis of Impedance Data and its Applications (임피던스 복소캐패시턴스 분석법의 이론 및 응용)

  • Jang, Jong-Hyun;Oh, Seung-Mo
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.223-234
    • /
    • 2010
  • In this review, the theory and applications of the complex capacitance analysis, which can be utilized in analyzing capacitor-like electrochemical systems, were summarized. Theoretically, it was suggested that the imaginary capacitance plots (Cim vs. log f) can provide a simple way to analyze electrochemical characteristics of capacitive systems, without complicated mathematical calculations. The usefulness of the complex capacitance analysis has been demonstrated by applying it to analyze EDLC characteristics of practical porous carbon electrodes, ionic conductivities inside small pores, and ionic resistances in the catalyst layers of polymer electrolyte membrane fuel cells.

Error Rate Enhancement Algorithm for 13.56 MHz Impedance Automatic Matching System (13.56 MHz 임피던스 자동 정합 시스템을 위한 임피던스 에러율 향상 알고리즘)

  • Jang, Kwang-Ho;Park, Su-Yeon;Choi, Jin-Joo;Lee, Dong-Heon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.484-490
    • /
    • 2018
  • This paper describes an algorithm for calculating load impedance by measuring voltage and current components using a VI sensor in a 13.56 MHz impedance automatic matching system. We propose an algorithm that improves the error rate by using an arbitrary complex calibration load instead of the conventional $50{\Omega}$ calibration load. The error rate is targeted to attain average values of $R_{IN}$ and $X_{IN}$ at 1% and 20% or less, respectively. First, the IF frequency is calculated using a mixer to reduce the error rate. Second, when the arbitrary complex load is used as the calibration load, the error rate $R_{IN}$ decreased from 4.7 % to 0.3 % on average, and $X_{IN}$ decreased from 102 % to 18.3 % on average.

Multi-Impedance Change Localization of the On-Voltage Power Cable Using Wavelet Transform Based Time-Frequency Domain Reflectometry (웨이블릿 변환 기반 시간-주파수 영역 반사파 계측법을 이용한 활선 상태 전력 케이블의 중복 임피던스 변화 지점 추정)

  • Lee, Sin Ho;Choi, Yoon Ho;Park, Jin Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.667-672
    • /
    • 2013
  • In this paper, we propose a multi-impedance changes localization method of on-voltage underground power cable using the wavelet transform based time-frequency domain reflectometry (WTFDR). To localize the impedance change in on-voltage power cable, the TFDR is the most suitable among reflectometries because the inductive coupler is used to inject the reference signal to the live cable. At this time, the actual on-voltage power cable has multi-impedance changes such as the automatic section switches and the auto load transfer switches. However, when the multi-impedance changes are generated in the close range, the conventional TFDR has the cross term interference problem because of the nonlinear characteristics of the Wigner-Ville distribution. To solve the problem, the wavelet transform (WT) is used because it has the linearity. That is, using WTFDR, the cross term interference is not generated in multi-impedance changes due to the linearity of the WT. To confirm the effectiveness and accuracy of the proposed method, the actual experiments are carried out for the on-voltage underground power cable.

Studies on the Impedance-Hymidity Characteristics of $TiO_2$-$V_2O_5$ Humidity Sensor ($TiO_2$-$V_2O_5$ 습도감지소자의 감습특성에 관한 연구)

  • 박재환;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.4
    • /
    • pp.529-535
    • /
    • 1990
  • This paper describes the factors which control the impedance-relative humidity characteristics of the TiO2-V2O5 humidity sensor. To obtain the quantitative relationships between impedance and many manufacturing parameters such as V2O5mol%, the sintering time and temperature, various sets of samples are preared and tested. With changing relative hymidity from 20% to 80%, it is measrued that the corresponding capacitance and impedance from the semicircles which complex impedance plots make. As a result we found that the impedance-relative humidity characteristics are mainly controlled by the doping amount of V2O5 total pore volume and bulk resistence of the elements. We can assume the equivalent circuits of each samples and finally control the sintering time to get a linear humidity impedance response curve which plays an important role in device making. 4mol% V2O5-TiO2 specimen sintered at 90$0^{\circ}C$ for 10min. show liear log(Z) vs. RH characteristics and 10mol% V2O5-TiO2 specimen sintered at the same temp. for 20min. show linear (Z) vs. RH.

  • PDF

Determination of Specimen Geomery for Estimation of the Complex Modulus of Viscoelas the Materials by the Lumped Mass Model (집중질량 모형화에 의한 점탄성재료의 복소 탄성계수 산출을 위한 시편 크기 의 절정)

  • Kang, Gi-Ho;Shim, Song;Kim, Gwang-Jun
    • Journal of KSNVE
    • /
    • v.1 no.2
    • /
    • pp.121-128
    • /
    • 1991
  • In order to use viscoelastic materials efficiently for noise and vibration control, or th qualify newly developed materials, knowledge of the Young' s modulus and loss factor is essemtial. These material properties, the so-called complex Young' s modulus, are frequently treated as dynamic charicteristics because of their dependence upon the frequency. Many techniques have been developed and verified for measuring complex Young' s modulus of viscoelastic materials. Among them, the impedance method is preferable in order to obtain the frequency information in detail. In this method, a cylindrical or prismatic specimen is excited into longitudinal harmonic vibration at one end, the other being fixed, and the resulting force is measured at the driving or fixed end. The amplitude ratio of the two signals and phase angle between them are then used to compute the material properties using various mathematical models. In this paper, the impedance method is investigated theoretically and experimentally. A way to determine the specimen geometry which is most appropriate for the identification of complex Young' s modulus using the lumped mass model is presented and discussed. Then experimental results supporting the theoretical predictions are presented.

  • PDF

Magneto-impedance and Magnetic Relaxation in Electrodeposited Cu/Ni80Fe20 Core/Shell Composite Wire (전기도금 된 Cu/Ni80Fe20 코어/쉘 복합 와이어에서 자기임피던스 및 자기완화)

  • Yoon, Seok Soo;Cho, Seong Eon;Kim, Dong Young
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.1
    • /
    • pp.10-15
    • /
    • 2015
  • The model for the magneto-impedance of composite wires composed of highly conductive nonmagnetic metal core and soft magnetic shell was derived based on the Maxwell's equations. The Cu($100{\mu}m$ diameter)/$Ni_{80}Fe_{20}$($15{\mu}m$ thickness) core/shell composite wire was fabricated by electrodeposition. The impedance spectra for the $Cu/Ni_{80}Fe_{20}$ core/shell composite wire were measured in the frequency range of 10 kHz~10 MHz under longitudinal dc magnetic field in 0 Oe~200 Oe. The spectra of complex permeability in circumferential direction were extracted from the impedance spectra by using the derived model. The extracted spectra of complex permeability showed relaxation-type dispersion which is well curve-fitted with Debye equation with single relaxation frequency. By analyzing the magnetic field dependence of the complex permeability spectra, it has been verified that the composite wire has magnetic anisotropy in longitudinal direction and the origin of the single relaxation process is the magnetization rotation in circumferential direction.

Impedance Characteristics of the Gel Type VRLA Battery at the Various State-of-Charge (겔식 납축 전지의 충전상태에 따른 임피던스 특성 연구)

  • An, Sang-Yong;Jeong, Euh-Duck;Won, Mi-Sook;Shim, Yoon-Bo
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.33-36
    • /
    • 2008
  • In the present study, impedance spectrometry has been used for predicting State-of-Charge (SoC) of gel type, Valve Regulated Lead Acid (VRLA), battery. The impedance measurements of VRLA battery (2V/1.2 Ah) at various SoC were made over the frequency range from 100kHz to 10mHz with an amplitude 10 mV. The impedance parameters have been evaluated by the analysis of the data using an equivalent circuit and a complex non-linear least squares (CNLS) fitting method. The charge transfer resistance values and double layer capacitance values of the positive electrode were higher than those of the negative electrode. The gel resistance values increased with decreasing in SoC. This indicates that the gel resistance is an important parameter for predicting SoC of VRLA battery.

Impedance spectroscopy analysis of the $Li_2CO3$ doped $(Ba,Sr)TiO_3$ thick films

  • Ham, Yong-Su;Go, Jung-Hyeok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.27-28
    • /
    • 2009
  • In this study, we have fabricated the 3 wt% $Li_2CO3$ doped $(Ba,Sr)TiO_3$ thick films on the Ag/Pd printed $Al_2O_3$ substrates for the LTCCs (Low Temperature Co-fired Ceramics) applications. From the X-ray diffraion analysis, 3 wt% $Li_2CO3$ doped BST thick films on the Ag/Pd printed $Al_2O_3$ substrates, which sintered at 900 $^{\circ}C$ have perovskite structure without any pyro phase. The dielectric properties of 3 wt% $Li_2CO3$ doped BST thick films were measured from 1 kHz to 1 MHz. To investigate the electrical properties of 3 wt% $Li_2CO3$ doped BST thick films, we employed the impedance spectroscopy. The complex impedance of 3 wt% $Li_2CO3$ doped BST thick films were measured from 20 Hz to 1 MHz at the various temperatures.

  • PDF