• Title/Summary/Keyword: Complex eigenvalue

Search Result 131, Processing Time 0.03 seconds

Simplified formulations for flutter instability analysis of bridge deck

  • Vu, Tan-Van;Kim, Young-Min;Han, Tong-Seok;Lee, Hak-Eun
    • Wind and Structures
    • /
    • v.14 no.4
    • /
    • pp.359-381
    • /
    • 2011
  • This paper deals with the flutter instability problem of flexible bridge decks in the framework of bimodal-coupled aeroelastic bridge system analysis. Based on the analysis of coefficients of the polynomials deduced from the singularity conditions of an integral wind-structure impedance matrix, a set of simplified formulations for calculating the critical wind velocity and coupled frequency are presented. Several case studies are discussed and comparisons with available approximated approaches are made and presented, along with a conventional complex eigenvalue analysis and numerical results. From the results, it is found that the formulas that are presented in this study are applicable to a variety of bridge cross sections that are not only prone to coupled-mode but also to single-mode-dominated flutter.

Damping of a taut cable with two attached high damping rubber dampers

  • Cu, Viet Hung;Han, Bing;Wang, Fang
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1261-1278
    • /
    • 2015
  • Due to their low intrinsic damping, stay cables in cable-stayed bridges have often exhibited unanticipated and excessive vibrations which result in increasing maintenance frequency and disruption to normal operations of the entire bridges. Mitigation of undesired cable vibration can be achieved by attaching an external damping device near the anchorage. High Damping Rubber (HDR) dampers have many advantages such as compact size, better aesthetics, easy maintenance, temperature stability, and cost benefits; therefore, they have been widely used to increase cable damping. Although a single damper has been shown to reduce cable vibrations, it is not the most effective method due to geometric constraints. This paper proposes the use of two HDR dampers to improve effectiveness and robustness in suppressing cable vibration. Oscillation parameters of the cable-dampers system were investigated in detail by modeling the stay cable as a taut string and each HDR damper as complex-valued impedance and by using an analytical formulation of the complex eigenvalue problem. The problem of two HDR dampers arbitrarily located along a cable is solved and the solution is discussed. Asymptotic formulas to calculate the damping ratios of the cable with two HDR dampers installed near the anchorage(s) are proposed and compared with the exact solutions. Further, a design example is presented in order to justify the methodology. The results of this study show that when the two HDR dampers are installed close to each other on the same end of the cable, some interaction between the dampers leads to reduced damping ratio. When the dampers are on the opposite ends of the cable, they are effective in increasing damping ratio and can provide better vibration reduction to multiple modes.

Complex modes in damped sandwich beams using beam and elasticity theories

  • Ahmad, Naveed;Kapania, Rakesh K.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.57-76
    • /
    • 2015
  • We investigated complex damped modes in beams in the presence of a viscoelastic layer sandwiched between two elastic layers. The problem was solved using two approaches, (1) Rayleigh beam theory and analyzed using the Ritz method, and (2) by using 2D plane stress elasticity based finite-element method. The damping in the layers was modeled using the complex modulus. Simply-supported, cantilever, and viscously supported boundary conditions were considered in this study. Simple trigonometric functions were used as admissible functions in the Ritz method. The key idea behind sandwich structure is to increase damping in a beam as affected by the presence of a highly-damped core layer vibrating mainly in shear. Different assumptions are utilized in the literature, to model shear deformation in the core layer. In this manuscript, we used FEM without any kinematic assumptions for the transverse shear in both the core and elastic layers. Moreover, numerical examples were studied, where the base and constraining layers were also damped. The loss factor was calculated by modal strain energy method, and by solving a complex eigenvalue problem. The efficiency of the modal strain energy method was tested for different loss factors in the core layer. Complex mode shapes of the beam were also examined in the study, and a comparison was made between viscoelastically and viscously damped structures. The numerical results were compared with those available in the literature, and the results were found to be satisfactory.

Damped Vibrations of Axially-Stressed Laminated Beams using Zig-Zag Finite Element (축방향 하중을 받는 점탄성물질이 심어진 적층보의 지그재그요소를 이용한 진동해석)

  • 이덕규
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.1-4
    • /
    • 2001
  • Dynamic analysis of laminated beams with a embedded damping layer under tension or compression axial load is investigated. Improved Layer-Wise Zig-Zag Beam Theory and Interdependent Kinematic Relation using the governing equations of motion are incorporated to model the laminated beams with a damping layer and a corresponding beam zig-zag finite element is developed. Flexural frequencies and modal loss actors under tension or compression axial load are calculated based on Complex Eigenvalue Method. The effect of the axial tension and compression load on the frequencies and loss factors is discussed.

  • PDF

LERAY-SCHAUDER DEGREE THEORY APPLIED TO THE PERTURBED PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.219-231
    • /
    • 2009
  • We show the existence of at least four solutions for the perturbed parabolic equation with Dirichlet boundary condition and periodic condition when the nonlinear part cross two eigenvalues of the eigenvalue problem of the Laplace operator with boundary condition. We obtain this result by using the Leray-Schauder degree theory, the finite dimensional reduction method and the geometry of the mapping. The main point is that we restrict ourselves to the real Hilbert space instead of the complex space.

  • PDF

A SIMPLE AUGMENTED JACOBI METHOD FOR HERMITIAN AND SKEW-HERMITIAN MATRICES

  • Min, Cho-Hong;Lee, Soo-Joon;Kim, Se-Goo
    • The Pure and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.185-199
    • /
    • 2011
  • In this paper, we present a new extended Jacobi method for computing eigenvalues and eigenvectors of Hermitian matrices which does not use any complex arithmetics. This method can be readily applied to skew-Hermitian and real skew-symmetric matrices as well. An example illustrating its computational efficiency is given.

SOLVABILITY FOR THE PARABOLIC PROBLEM WITH JUMPING NONLINEARITY CROSSING NO EIGENVALUES

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.4
    • /
    • pp.545-551
    • /
    • 2008
  • We investigate the multiple solutions for a parabolic boundary value problem with jumping nonlinearity crossing no eigenvalues. We show the existence of the unique solution of the parabolic problem with Dirichlet boundary condition and periodic condition when jumping nonlinearity does not cross eigenvalues of the Laplace operator $-{\Delta}$. We prove this result by investigating the Lipschitz constant of the inverse compact operator of $D_t-{\Delta}$ and applying the contraction mapping principle.

  • PDF

Vibration Analysis of Axially-Stressed Composite Beam with Viscoelastic Layer (점탄성층을 갖는 복합재보의 축하중 작용시 진동해석)

  • 이덕규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.33-38
    • /
    • 2002
  • Dynamic analysis of laminated beams with a embedded damping layer under tension or compression axial load is investigated. Layer-Wise Zig-Zag Beam Theory and Interdependent Kinematic Relation using the governing equations of motion are incorporated to model the laminated beams with a damping layer and a corresponding beam zig-zag finite element is developed. Flexural frequencies and modal loss factors under tension or compression axial load are calculated based on Complex Eigenvalue Method. The effects of the axial tension and compression load on the frequencies and loss factors are discussed.

  • PDF

Longitudinal Vibration Analysis of an Axially Moving Material by Using the Assumed Modes Method (가정모드법을 이용한 축방향으로 이동하는 연속체의 종진동 해석)

  • 정진태;허진욱;한창수
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.138-143
    • /
    • 2000
  • Longitudinal vibration of an axially moving material is investigated by using the assumed modes method. To circumvent a difficulty in choosing the comparison functions which satisfy the boundary conditions, the assumed modes method is adopted by which equations of motion are discretized. Based on the discretized equations, the complex eigenvalue problem is solved and then the effects of the translating velocity on the natural frequencies and modes are analyzed.

  • PDF

Development of Helmholtz Solver for Thermo-Acoustic Instability within Combustion Devices (연소시스템의 열음향 불안정 예측을 위한 Helmholtz Solver 개발)

  • Kim, Seong-Ku;Choi, Hwan-Seok;Cha, Dong-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.445-455
    • /
    • 2010
  • In order to effectively predict thermo-acoustic instability within real combustors of rocket engines and gas turbines, in the present study, the Helmholtz equation in conjunction with the time lag hypothesis is discretized by the finite element method on three-dimensional hybrid unstructured mesh. Numerical nonlinearity caused by the combustion response term is linearized by an iterative method, and the large-scale eigenvalue problem is solved by the Arnoldi method available in the ARPACK. As a consequence, the final solution of complex valued eigenfrequency and acoustic pressure field can be interpreted as resonant frequency, growth rate, and modal shape for acoustic modes of interest. The predictive capabilities of the present method have been validated against two academic problems with complex impedance boundary and premixed flame, as well as an ambient acoustic test for liquid rocket combustion chamber with/without baffle.