• Title/Summary/Keyword: Complex coordinates system

Search Result 47, Processing Time 0.025 seconds

Analysis of Herringbone Grooved Journal Bearing Using Generalized Coordinate Transformation (일반좌표계 변환을 이용한 헤링본 그루브 베어링의 해석)

  • 박상신;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.317-324
    • /
    • 1999
  • The present work is an attempt to calculate the steady state pressure and perturbed pressure of herringbone grooved journal bearings. A generalized coordinate system is introduced to handle the complex bearing geometry. The coordinates are fitted to the groove boundary and the Reynold's equation is transformed to be fitted to this coordinates system using the Gauss divergence theorem. This method makes it possible to deal with an arbitrary configuration of a lubricated surface. The characteristics of finite herringbone grooved journal are well calculated using this method.

  • PDF

A Generalized Modal Analysis for Multi-Stepped, Distributed-Parameter Rotor-Bearing Systems (다단 연속 회전체 베어링 계의 일반화된 모드 해석)

  • 박종혁;홍성욱
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.525-534
    • /
    • 1999
  • The present paper proposes a generalized modal analysis procedure for non-uniform, distributed-parameter rotor-bearing systems. An exact element matrix is derived for a Timoshenko shaft model which contains rotary inertia, shear deformation, gyroscopic effect and internal damping. Complex coordinates system is adopted for the convenience in formulation. A generalized orthogonality condition is provided to make the modal decomposition possible. The generalized modal analysis by using a modal decomposition delivers exact and closed form solutions both for frequency and time responses. Two numerical examples are presented for illustrating the proposed method. The numerical study proves that the proposed method is very efficient and useful for the analysis of distributed-parameter rotor-bearing systems.

  • PDF

Study on the Compensation of Strain Measurement Error in Sheet Metals (박판 변형률 측정 오차의 보정에 관한 연구)

  • 차지혜;금영탁
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.594-599
    • /
    • 2004
  • In the sheet metal forming operations, the strain measurement of sheet panel is an essential work which provides the formability information needed in die design, process design, and product inspection. To measure efficiently complex geometry strains, the 3-dimensional automative strain measurement system, which theoretically has a high accuracy but practically has about 3~5% strain error, is often used. For eliminating the strain error resulted in measuring the strains of formed panels using an automated strain measurement system, the position error calibration method is suggested, which computes accurate strains using the grids with accurate nodal coordinates. The accurate nodal coordinates are calculated by adding the nodal coordinates measured by the measurement system and the position error found using the multiple regression method as a function of the main error parameters obtained from the analysis of strain error in a standard cube. For the verification, the strain distributions of square and dome cups obtained from the position error calibration method are compared with those provided by the finite element analysis and ASAME.

Study on the Error Compensation in Strain Measurement of Sheet Metal Forming (박판성형 변형률 측정 오차보정에 관한 연구)

  • 한병엽;차지혜;금영탁
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.270-273
    • /
    • 2003
  • The strain measurement of the panel in the sheet metal forming is essential work which provides experimental data needed to die design, process design, and product inspection. To measure efficiently the complex geometry strain, the 3-dimensional automative strain measurement system, which has high accuracy in theory, but has some 3∼5% errors in practice, is often used. The object of this study is to develop the error compensation technology to eliminate the strain, errors resulted when formed panels are measured using an automated strain measurement system. To achieve the study object, the position error calibration method correcting coordinates of the grid node recognized by a camera using error functions is suggested. Then the position errors were found by calculating the difference in the position of the cube node between real coordinates and measured coordinates in toms of node coordinates and the error calibration equations were derived by regressing the position errors. In order to show the validation of the suggested position error calibration method, finite element analysis and current calibration method was performed for the initial-blankformed.

  • PDF

Development of Ultrasound Sector B-Scanner(II)-Digital Scan Converter- (초음파 섹터 B-스캐너의 개발(II)-디지탈 스캔 컨버터-)

  • 김주한;김영모
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.133-138
    • /
    • 1986
  • Abstract In a conventional digital sector scan system in the ultrasound medical imaging, the sampling space is in the polar coordinates while the display space is in the cartesian coordinates, which necessitates a coordinate transformation process resultion process resulting the overall system very complex and bulky. In this paper we propose a new architecture of the Digital-Scan-Converter (DSC) for the ultrasound sector scan system in which sampling space is the same as the display space, so the data are displayed as they are acquired without any interpola- tion process required. To implement the above real time DSC. two frequency synthesizes with very high switching time and a low-pass filter are required. The former determines the precise location of the data points and the latter fills the gap betw- een pixels in the horizontal direction.

  • PDF

Comparison of Substructure Synthesis Methods based on Global and Local Coordinates (전역좌표계에 근거한 부분구조합성법과 국부좌표계에 근거한 부분구조합성법의 비교)

  • Kwak, Moon-K.;Na, Sung-Soo;Bae, Byung-Chan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.712-719
    • /
    • 2006
  • This paper is concerned with the comparison of substructure synthesis methods based on global and local coordinates. The substructure synthesis methods based on the global coordinates were first proposed for the dynamic analysis of complex structure and the substructure synthesis method based on the local coordinates was proposed to solve the dynamic problem of tree-like structure. However, the conceptual difference between two methods in solving the dynamic problem has never been explained. In this paper, a structure consisting of two beams is considered to show the conceptual difference of two methods. The dynamic formulation shows the characteristics and differences of two methods explicitly. The procedure for choosing proper substructure modes in each method is also explained in detail. In addition, the advantage of the substructure synthesis method based on the local coordinate system is discussed based on the numerical example. Numerical examples show how two methods are applied to the addressed problem.

Analysis of Herringbone Grooved Journal Bearing Using Generalized Coordinate Transformation (일반좌표계 변환을 이용한 헤링본 그루브 베어링의 해석)

  • 박상신;김영진;유송민
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.432-439
    • /
    • 2000
  • The present work is an attempt to calculate the steady state pressure and perturbed pressure of herringbone grooved journal bearings. A generalized coordinate system is introduced to handle the complex bearing geometry. The coordinates are fitted to the groove boundary and the Reynold's equation is transformed to be fitted to this coordinate system using the Gauss divergence theorem. This method makes it possible to deal with an arbitrary configuration of a lubricated surface. The caharacteristics of finite herringbone groove journal bearing are well calculated using this method.

Development of an Air Pollution Monitoring Network Design Method Based on Regional Representativeness and Pollution Damage Impact (地域代表性과 汚染被害를 考慮한 大氣汚染 測定網 配置技法의 開發에 關한 硏究)

  • 김태형;김정욱
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.47-54
    • /
    • 1987
  • A new method for designing air pollution monitoring newtork is presented in this study. In this method, the magnitudes and the correlation coefficients of predicted concentrations in each grid points are examined and the monitoring stations are assigned to those stations which cover the damage cost the most. This method was applied to the Ulsan-Onsan Industrial Complex. This method turned out to be much more efficient than the method of TM coordinates and the method of concentric circles prescribed in the Standard Methods for Pollution Measurement as well as the existing monitoring system established in the area. The 21 stations selected by the method of TM coordinates could cover only 64.4% of the damage cost in the area, the 16 stations by the method of concentric circles 72.1%, and the existing 21 stations 67.8%, while 11 stations were enough to cover 90% of the damage cost in the area with this method. It also was found that this method required only 24 stations to cover the entire area.

  • PDF

Emotion Recognition and Expression System of Robot Based on 2D Facial Image (2D 얼굴 영상을 이용한 로봇의 감정인식 및 표현시스템)

  • Lee, Dong-Hoon;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.371-376
    • /
    • 2007
  • This paper presents an emotion recognition and its expression system of an intelligent robot like a home robot or a service robot. Emotion recognition method in the robot is used by a facial image. We use a motion and a position of many facial features. apply a tracking algorithm to recognize a moving user in the mobile robot and eliminate a skin color of a hand and a background without a facial region by using the facial region detecting algorithm in objecting user image. After normalizer operations are the image enlarge or reduction by distance of the detecting facial region and the image revolution transformation by an angel of a face, the mobile robot can object the facial image of a fixing size. And materialize a multi feature selection algorithm to enable robot to recognize an emotion of user. In this paper, used a multi layer perceptron of Artificial Neural Network(ANN) as a pattern recognition art, and a Back Propagation(BP) algorithm as a learning algorithm. Emotion of user that robot recognized is expressed as a graphic LCD. At this time, change two coordinates as the number of times of emotion expressed in ANN, and change a parameter of facial elements(eyes, eyebrows, mouth) as the change of two coordinates. By materializing the system, expressed the complex emotion of human as the avatar of LCD.

Noncontact 3-dimensional measurement using He-Ne laser and CCD camera (He-Ne 레이저와 CCD 카메라를 이용한 비접촉 3차원 측정)

  • Kim, Bong-chae;Jeon, Byung-cheol;Kim, Jae-do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1862-1870
    • /
    • 1997
  • A fast and precise technique to measure 3-dimensional coordinates of an object is proposed. It is essential to take the 3-dimensional measurements of the object in design and inspection. Using this developed system a surface model of a complex shape can be constructed. 3-dimensional world coordinates are projected onto a camera plane by the perspective transformation, which plays an important role in this measurement system. According to the shape of the object two measuring methods are proposed. One is rotation of an object and the other is translation of measuring unit. Measuring speed depending on image processing time is obtained as 200 points per second. Measurement resolution i sexperimented by two parameters among others; the angle between the laser beam plane and the camera, and the distance between the camera and the object. As a result of these experiments, it was found that measurement resolution ranges from 0.3mm to 1.0mm. This constructed surface model could be used in manufacturing tools such as rapid prototyping machine.