• Title/Summary/Keyword: Complex Damage

Search Result 858, Processing Time 0.025 seconds

A Study of Geum Silk from Seokgatap in Bulguksa (불국사 석가탑 내 발견 금직물(錦織物) 고찰)

  • Sim, Yeon-Ok
    • Journal of the Korean Society of Costume
    • /
    • v.62 no.3
    • /
    • pp.137-151
    • /
    • 2012
  • In 1966, $Seokgatap$ pagoda in $Bulguksa$ temple was damaged by the tomb robbers and was dismantled to fix the damage. In the process, many offerings to Buddha and containers for Sarira(the cremated remains) were found in $Sarigong$(specially designated space for the Sarira casket) inside the second floor of the pagoda. Many fabrics like $Geum$, $Neung$(twill), $Rha$(complex gauze), silk tabby and linen were also excavated. In this study, $Geum$ fabric from the $Seokgatap$ was closely examined. $Geum$ of $seokgatap$ is weft-faced compound weave according to the analysis of its weaving pattern which was wrongly presumed as warp-faced compound weave for some time. Technical analysis of $Geum$: Main: silk, Binding: silk, Proportion: 1 main warp to 1 binding warp, Count: 15 main warps and 15 binding warps per centimeter, Weft: polychrome silk without apparent twist, Colors: yellow, mustard yellow, deep blue, green and purple, Weave: weft-faced compound twill, 1/2 S. $Geum$ of $Seokgatap$ was made in the $8^{th}$ century, since it was weaved in weft-faced compound weave twill which was popular in the $8-9^{th}$ century. And also, the arrangement of the colors was done in the same way of gradation $Geum$ silk which was popular in the $7-8^{th}$ C in China and Japan. Third, we restored the pattern of $Geum$ of the Unified Shilla Dynasty for the first time. It was very difficult to figure out the shape and the size of pattern since the fabric was partially lost and ruined. We tried to draw the diagram of structure with the cross point of the warp and the weft to restore the pattern. By doing so, we could identify two kinds of small flower pattern, palmette and the pattern of repeating vines. Fourth, we could infer that the $Geum$ of $Seokgatap$ was used for $geumdae$(a pouch made of $geum$) by analyzing all the documents and the characteristics of the fabric.

해상풍속측정용 마스트의 충격해석에 관한 연구

  • Lee, Gang-Su;Kim, Man-Eung;Son, Chung-Ryeol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.108-108
    • /
    • 2009
  • The main object of this research is to minimize the shock effects which frequently result in fatal damage in wind met mast on impact of barge. The collision between wind met mast and barge is generally a complex problem and it is often not practical to perform rigorous finite element analyses to include all effects and sequences during the collision. LS-dyna generally purpose explicit finite element code, which is a product of ANSYS software, is used to model and analyze the non-linear response of the met mast due to barge collision. A significant part of the collision energy is dissipated as strain energy and except for global deformation modes, the contribution from elastic straining can normally be neglected. On applying impact force of a barge to wind met mast, the maximum acceleration, internal energy and plastic strain were calculated for each load cases using the finite element method and then compare it, varying to the velocity of barge, with one varying to the thickness of rubber fender conditions. Hence, we restrict the present research mainly to the wind met mast and also parametric study has been carried out with various velocities of barge, thickness of wind met mast, thickness and Mooney-Rivlin coefficient of rubber fender with experimental data. The equation of motion of the wind met mast is derived under the assumption that it was ignored vertical movement effect of barge on sea water. Such an analyzing method which was developed so far, make it possible to determine the proper size and material properties of rubber fender and the optimal moving conditions of barge, and finally, application method can be suggested in designing process of rubber fender considering barge impact.

  • PDF

Neuroprotective Effects of Medicinal Herbs in Organotypic Hippocampal Slice Cultures (뇌해마의 장기양 조직배양을 이용한 한약물의 뇌신경세포손상 보호효능 연구)

  • Jung, Hyuk-Sang;Sohn, Nak-Won;Lee, Won-Chul
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.461-472
    • /
    • 2004
  • Objectives : For the screening of neuroprotective effects of medicinal herbs, the complex system of animal models suffer some disadvantages in controlling critical parameters such as blood pressure and body temperature. Additionally, application of drugs to the appropriate brain area sometimes is difficult, due to poor permeability though the blood brain barrier, and so potential protective effects might be masked. Methods : Organotypic hippocampal slice culture (OHSC) method has the advantages of being relatively easy to prepare and of maintaining the general structure, including tissue integrity and the connections between cells. Drugs can easily be applied and neuronal damage can easily be quantified by using tissues and culture media. This study demonstrates neuroprotective effects of Puerariae radix (葛根, PR), Salviae miltiorrhizae radix (丹蔘, SR), Rhei rhizoma (大黃, RR), and Bupleuri radix (柴胡, BR). These were screenedand compared to MK-801, antagonist of NMDA receptors, by using OHSC of 1 week-old Sprague-Dawley rats. Oxygen/glucose deprivation (OGD) were conducted in an anaerobic chamber $(85%\;N_2,\;10%\;CO_2\;and\;5%\;H_2)$ in a deoxygenated glucose-free medium for 60 minutes. Water extracts of each herbs were treated to culture media with $5\;{\mu}g/ml$ for 48 hours. Results : Neuronal cell death in the cultures was monitored by densitometric measurements of the cellular uptake of propidium iodide (PI). PI fluorescence images were obtained at 48 hours after the OGD and medicinal herb treatment. Also TUNEL-positive cells in the CAI and DG regions and LDH concentrations in culture media were measured at 48 hours after the OGD. According to measured data, MK-801, PR, SR and BR demonstrated significant neuroprotective effect against excessive neuronal cell death and apoptosis induced by the OGD insult. Especially, PR revealed similar neuroprotective effect to MK-801 and RR demonstrated weak neuroprotective effect. Conclusions : These results suggest that OHSC can be a suitable method for screening of neuroprotective effects of medicinal herbs. (This work was supported by the research program of Dongguk University and Grant 01-PJ9-PG1-01CO03-0003 from Ministry of Health & Welfare.)

  • PDF

The Role of Bmi1 in Pilocarpine-induced Status Epilepticus in Mice (Pilocarpine에 의해 유도된 생쥐 경련중첩증에서 Bmi1의 역할)

  • Pyeon, Hae-In;Bak, Jia;Choi, Yun-Sik
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.513-521
    • /
    • 2020
  • B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi1) is a polycomb group protein and a core component of polycomb repressive complex 1. Initial research into Bmi1 has focused on its role in tumorigenesis, and it is generally accepted that it is important for the proliferation and survival of cancer cells. However, more recent studies have revealed that Bmi1 is downregulated in brains with neurodegenerative disease and that it regulates the function of mitochondria and reactive oxygen species levels. In this study, we tested the therapeutic potential of Bmi1 in pilocarpine-induced seizures in Bmi1-knockout mice. Bmi1 expression transiently increased in the hippocampal CA1 and CA3 and the dentate gyrus following pilocarpine-induced status epilepticus (SE). In terms of seizure behavior, SE induction was 43.14% and 53.57% for Bmi1+/+ and Bmi1+/- mice, respectively. However, there was no significant difference in mortality or hippocampal damage between the two groups. Two months after SE induction, the frequency of epileptic seizures in the Bmi1+/- mice was 50% lower than in the control group, although the difference was not statistically significant. In addition, mossy fiber outgrowth in the Bmi1+/- mice was significantly higher than in their wild-type littermates. Taken together, these data indicate that reduced Bmi1 activity increases pilocarpine-induced seizure probability and mossy fiber outgrowth.

The Evaluation of Anti-wrinkle Effects in Oriental Herb Extract (한방 원료 추출물의 주름개선 효과를 통한 화장품 원료로서의 가치 평가)

  • Kang, Kum-Suk;Kim, In-Deok;Kwon, Ryun-Hee;Heo, Ye-Young;Oh, Sang-Hoon;Kim, Min-Ah;Jung, Hye-Jin;Kang, Hwan-Yul;Ha, Bae-Jin
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1147-1151
    • /
    • 2007
  • The human skin is constantly exposed to environmental irritants such as ultraviolet, smoke and chemicals. Free radicals and reactive oxygen species caused by them play critical roles in cellular damage. They not only injure the skin structure but also participate in the immensely complex inflammatory reaction. Anti-wrinkle effects of the Oriental herb extracts(OHE) were evaluated by the determination of anti-oxidation, collagenase inhibition and collagen synthesis in normal human fibroblast. OHE showed antioxidative activity as high as vitamin C, trolox and DL-penicillamine. Also OHE showed promotive effect on collagen synthesis and inhibitory effect on collagenase activity. These results demonstrated that OHE could be useful as an anti-wrinkle cosmetic ingredient.

Seismic safety assessment of eynel highway steel bridge using ambient vibration measurements

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Ozdemir, Hasan
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.131-154
    • /
    • 2012
  • In this paper, it is aimed to determine the seismic behaviour of highway bridges by nondestructive testing using ambient vibration measurements. Eynel Highway Bridge which has arch type structural system with a total length of 216 m and located in the Ayvaclk county of Samsun, Turkey is selected as an application. The bridge connects the villages which are separated with Suat U$\breve{g}$urlu Dam Lake. A three dimensional finite element model is first established for a highway bridge using project drawings and an analytical modal analysis is then performed to generate natural frequencies and mode shapes in the three orthogonal directions. The ambient vibration measurements are carried out on the bridge deck under natural excitation such as traffic, human walking and wind loads using Operational Modal Analysis. Sensitive seismic accelerometers are used to collect signals obtained from the experimental tests. To obtain experimental dynamic characteristics, two output-only system identification techniques are employed namely, Enhanced Frequency Domain Decomposition technique in the frequency domain and Stochastic Subspace Identification technique in time domain. Analytical and experimental dynamic characteristic are compared with each other and finite element model of the bridge is updated by changing of boundary conditions to reduce the differences between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of highway bridges. After finite element model updating, maximum differences between the natural frequencies are reduced averagely from 23% to 3%. The updated finite element model reflects the dynamic characteristics of the bridge better, and it can be used to predict the dynamic response under complex external forces. It is also helpful for further damage identification and health condition monitoring. Analytical model of the bridge before and after model updating is analyzed using 1992 Erzincan earthquake record to determine the seismic behaviour. It can be seen from the analysis results that displacements increase by the height of bridge columns and along to middle point of the deck and main arches. Bending moments have an increasing trend along to first and last 50 m and have a decreasing trend long to the middle of the main arches.

Regional Realtime Ocean Tide and Storm-surge Simulation for the South China Sea (남중국해 지역 실시간 해양 조석 및 폭풍해일 시뮬레이션)

  • Kim, Kyeong Ok;Choi, Byung Ho;Lee, Han Soo;Yuk, Jin-Hee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.69-83
    • /
    • 2018
  • The South China Sea (SCS) is a typical marginal sea characterized with the deep basin, shelf break, shallow shelf, many straits, and complex bathymetry. This study investigated the tidal characteristics and propagation, and reproduced typhoon-induced storm surge in this region using the regional real-time tide-surge model, which was based on the unstructured grid, resolving in detail the region of interest and forced by tide at the open boundary and by wind and air pressure at the surface. Typhoon Haiyan, which occurred in 2013 and caused great damage in the Philippines, was chosen as a case study to simulate typhoon's impact. Amplitudes and phases of four major constituents were reproduced reasonably in general, and the tidal distributions of four constituents were similar to the previous studies. The modelled tide seemed to be within the acceptable levels, considering it was difficult to reproduce the tide in this region based on the previous studies. The free oscillation experiment results described well the feature of tide that the diurnal tide is prevailing in the SCS. The tidal residual current and total energy dissipation were discussed to understand the tidal and sedimentary environments. The storm-surge caused by typhoon Haiyan was reasonably simulated using this modeling system. This study established the regional real-time barotropic tide/water level prediction system for the South China Sea including the seas around the Philippines through the validation of the model and the understanding of tidal characteristics.

The Study on Wound Healing in Rabbit Skins by Low-intensity Laser Irradiation (저강도 레이저 조사에 의한 가토 피부의 상처 치유에 관한 연구)

  • 김식현;전진석
    • Biomedical Science Letters
    • /
    • v.6 no.2
    • /
    • pp.119-129
    • /
    • 2000
  • The skin is an organ that has many important roles, including protection against infection, regulation of temperature and fluid loss, and sensory function. Injury to the skin, wound repair normally involves: (1) balanced activity of inflammation, (2) the re-epithelial phase and (3) the matrix formation of remodeling phase. Thus, skin wound healing is a finely controlled biological process involving a series of complex cellular interactions. Laser therapy is being implemented with increasing frequency in medicine. Low intensity laser is one that is capable of producing an energy density so low that any biologic alterations are the result of direct irradiation effect, not thermal events. This study was designed to evaluate the efficacy of low intensity laser therapy on skin wound healing in rabbits. A total of 10 male rabbits (New Zealand White Rabbit), age 8 weeks were used. Skin wound were surgically created dorso-lateral on the flank of 10 rabbits (2$\times$2 cm/damage areas). The experimental animals were treated with 5Hz (830 nm wave length) low-intensity laser (MILTA-01 Model) daily for 10 min (1.6 J/$cm^2$) for 12 days. Control animals were sham treated with the laser head. Laser irradiation animals showed a complete remodeling of the epithelial layer, a positive repair of connective tissues, and enhanced the wound closure rate over time as compared to the control animals. Especially, laser irradiation groups improved fibroblast activity, cellular content, granulation tissue formation, and collagen deposition which is resulted in improving the tensile strength of the wound. These findings suggest that laser photostimulation could accelerate healing of open wound in rabbits, and may be benefit in the treatment of open wound, including decubitis ulcers.

  • PDF

Fault Tolerant System Modeling based on Real-Time Object (실시간 객체 기반 결함허용 시스템 모델링)

  • Im, Hyeong-Taek;Yang, Seung-Min
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2233-2244
    • /
    • 1999
  • It is essential to guarantee high reliability of embedded real-time systems since the failure of such systems may result in large financial damage or threaten human life. Though many researches have devoted to fault tolerant mechanisms, most of them are object-level fault tolerant mechanisms that can detect errors occurred in a single object and treat the errors in object-level. As embedded real-time systems become more complex and larger, there exist faults that cannot be detected by or tolerated with object-level fault tolerance. Hence, system-level fault tolerance is needed. System-level fault tolerance examines the status of a system whether the system is normal or not by analyzing the status of objects. When an error is detected it should be capable of locating the fault and performing an appropriate recovery and reconfiguration action. In this paper, we propose RobustRTO(Robust Real-Time Object) that provides object-level fault tolerance capability and RMO(Region Monitor real-time Object) that offers system-level fault tolerance capability. Then we show how highly dependable fault tolerant systems can be modeled by RobustRTO and RMO. The model is presented based on real-time objects.

  • PDF

Model Integration of Systems Design and Safety Analysis Processes for Systematic Design of Safety-Critical Systems (안전중시 시스템의 체계적인 설계를 위한 시스템 설계 및 안전 분석 활동 모델의 통합)

  • Kim, Chang-Won;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.363-368
    • /
    • 2016
  • In safety-critical systems (SCS), failure may result in accidents with serious damage to human beings and property. As systems become more complex and automated, the goal of acquiring safety has attracted increasing attention lately in the defense industry, as well as the rail, automotive, and aerospace industries, among others. As such, the Department of Defense and international organizations have established appropriate standards and guidelines for systems safety and design. To this end, there has been research on the processes, methods, and associated tools for safety design. However, those results do not seem to sufficiently utilize system architectural information. The purpose of this paper is to provide a more systematic approach to SCS design. To better identify potential hazards, design information at each level of system hierarchy is exploited. Based on the results, an integrated process model was developed by combining the processes of system design and safety analysis. As a case study, the resultant integrated process model was applied to the safety design of an automobile system, which shows useful results for safety evaluation.