• Title/Summary/Keyword: Complex Conductivity

Search Result 258, Processing Time 0.022 seconds

Simple and Sensitive Electrochemical Sandwich-type Immunosensing of Human Chorionic Gonadotropin based on b-cyclodextrin Functionalized Graphene

  • Linfen Xu;Ling liu;Xiaoyan Zhao;Jinyu Lin;Shaohan Xu;Jinlian He;Debin Jiang;Yong Xia
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.51-58
    • /
    • 2023
  • The effective detection of human chorionic gonadotropin (HCG) is considerably important for the clinical diagnosis of both of early pregnancy and nonpregnancy-related diseases. In this work, a simple and sensitive electrochemical sandwich-type immunosensing platform was designed by synthesizing b-cyclodextrin (CD) functionalized graphene (CD/GN) hybrid as simultaneously sensing platform and signal transducer coupled with rhodamine b (RhB) as probe. In brief, GN offers large surface area and high conductivity, while CD exhibits superior host-guest recognition capability, thus the primary antibody (Ab1) of HCG can be bound into the cavities of CD/GN to form stable Ab1/CD/GN inclusion complex; meanwhile, the secondary antibody (Ab2) and RhB can also enter into the cavities, producing RhB/Ab2/CD/GN complex. Then, by using Ab1/CD/GN as sensing platform and RhB/Ab2/CD/GN as signal transducer (in which RhB was signal probe), a simple sandwich-type immunosensor was constructed. Under the optimum parameters, the designed immunosensor exhibited a considerable low analytical detection of 1.0 pg mL-1 and a wide linearity of 0.002 to 10.0 ng mL-1 for HCG, revealing the developed sandwich-type electrochemical immunosensing platform offered potential real applications for the determination of HCG.

Cr(III)-Tetraaza Macrocyclic Complexes Containing Auxiliary Ligands (Part I); Synthesis and Characterization of Cr(III)-Benzoato and Chlorobenzoato Macrocyclic Complexes

  • Byun, Jong-Chul;Kim, Goo-Cheul;Han, Chung-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.977-982
    • /
    • 2004
  • The reaction of $cis-[Cr([14]-decane)(OH_2)_2]^+$ ([14]-decane = rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-teraazacyclotetradecane) with auxiliary ligands {$L_a$ = benzoate(bz) or chlorobenzoate(cbz)} leads to a new compound $[Cr([14]-decane)(bz)_2]ClO_4$ or $[Cr([14]-decane)(cbz)_2]ClO_4$. These complexes have been characterized by a combination of elemental analysis, conductivity, IR and Vis spectroscopy, mass spectrometry, and X-ray crystallography. The crystal structure of $[Cr([14]-decane)(cbz)_2]^+$ was determined. The complex shows a distorted octahedral coordination environment with the macrocycle adopting a folded cis-V conformation. The angle $N_{axial}-Cr-N_{axial}$ deviates by $14.5^{\circ}$ from the ideal value of $180^{\circ}$for a perfect octahedron. The bond angle cis-O-Cr-O between the Cr(III) ion and the two carboxylate oxygen atoms of the monodentate p-chlorobenzoate ligands is close to 90$^{\circ}$. The FAB mass spectra of the $cis-[Cr([14]-decane)(La)_2]ClO_4$ display peaks due to the molecular ions $[Cr([14]-decane)(bz)_2-H]^\;,\;[Cr([14]-decane)(cbz)_2-2H]^$ at m/z 578, 646, respectively.

RFID Tag Antenna Mountable on High-Conductivity and High Permittivity an Materials at UHF Band (고 전도율과 고 유전율 물질에 부착 가능한 RFID 태그 안테나)

  • Kwon Hong-Il;Lee Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.8 s.99
    • /
    • pp.797-802
    • /
    • 2005
  • In this paper, we design a UHF band RFID tag antenna which is conjugate matched to an impedance of a chip and also mountable on conductive materials. The proposed tag antenna is very compact($50{\times}30{\times}4mm$) with a modified PIFA shape. The proposed tag antenna has an advantage of easy matching to various chip input impedances. The performance of the antenna is evaluated by monitoring RCS in the reader direction. The RCS of the designed tag is $-10.2\;dBm^2$ when the chip is shorted and is $-21\;dBm^2$ when the chip impedance is a complex conjugate of the antenna impedance.

Survey on Geochemical Characteristics of Groundwater Around Carcass Burial Area and Agricultural Area with Livestock Facilities

  • Park, Sunhwa;Kim, Hyun-Gu;Lee, Min-Kyeong;Lee, Gyeong-Mi;Kim, Moon-Su;Kwon, Oh-Sang;Kim, Taeseung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.473-479
    • /
    • 2014
  • In this study, chemical characteristics of groundwater around carcass burial areas and those in agricultural and livestock-farming complex areas in South Korea were monitored. Groundwater samples were collected from 166 wells around carcass burial sites and 466 wells around the agricultural areas where carcass burial sites are absent. The chemical parameters (pH, electrical conductivity, dissolved oxygen, oxidation reduction potential, $NO_3$-N, $NH_4$-N, and $Cl^-$) in carcass burial areas and agricultural areas were similar. The $NO_3$-N concentrations exhibited minimal seasonal fluctuations below $30mg\;L^{-1}$ in most of the wells, even in the wells located close to the carcass burial sites; and $Cl^-$ concentrations also showed similar patterns. The chemical characteristics of groundwater monitored in this study indicated that groundwater was widely contaminated by agricultural activities and livestock farming, but probably not by leachates derived from nearby carcass burial sites.

Electrical Properties of the Lanthanum Ferrite-Based Cathode Materials for Low-Temperature SOFCs (저온 작동형 SOFC Lanthanum Ferrite계 공기극 소재의 전기적 특성)

  • Kang, Ju-Hyun;Choi, Jung-Woon;Shim, Han-Byel;Yoo, Kwang-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.3 s.286
    • /
    • pp.162-168
    • /
    • 2006
  • The perovskites with nominal compositions $La_{0.8}Sr_{0.2}Fe_{1-x}M_xO_3$ (M=Co, Mn, Ni, x=0.1-0.3) were fabricated by a solid-state reaction method as cathode materials of low-temperature operating Solid Oxide Fuel Cells (SOFCs). X-ray diffraction analysis and microstructure observation for the sintered samples were performed. The ac complex impedance were measured in the temperature range $600-900^{\circ}C$ in air and fitted with a Solatron ZView program. The electrical conductivity and polarization resistance of $La_{0.8}Sr_{0.2}Fe_{1-x}M_xO_3$ (M=Co, Mn, Ni, x=0.1-0.3) were characterized systematically. The porosities of the sintered samples were in the range of 25% to 38%. The polarization resistance of $La_{0.8}Sr_{0.2}Fe_{0.7}M_{0.3}O_3$ was $0.291{\Omega}cm^2\;at\;700^{\circ}C$.

Solvolysis Reaction Kinetics, Rates and Mechanism for Phenyl N-Phenyl Phosphoramidochloridate

  • Choi, Hojune;Yang, Kiyull;Koh, Han Joong;Koo, In Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2465-2470
    • /
    • 2014
  • The rate constants of solvolysis of phenyl N-phenyl phosphoramidochloridate (PhNHPO(Cl)OPh, Target Compound-TC1) have been determined by a conductivity method. The solvolysis rate constants of TC1 are well correlated with the extended Grunwald-Winstein equation, using the $N_T$ solvent nucleophilicity scale and YCl solvent ionizing scale, and sensitivity values of $0.85{\pm}0.14$ and $0.53{\pm}0.04$ for l and m, respectively. These l and m values were similar to those obtained previously for the complex chemical substances dimethyl thiophosphorochloridate; N,N,N',N'-tetramethyldiamidophosphorochloridate; 2-phenyl-2-ketoethyl tosylate; diphenyl thiophosphinyl chloride; and 9-fluorenyl chloroformate. As with the five previously studied solvolyses, an $S_N2$ pathway is proposed for the solvolyses of TC1. For four representative solvents, the rate constants were measured at several temperatures, and activation parameters (${\Delta}H^{\neq}$ and ${\Delta}S^{\neq}$) were estimated. These activation parameters are also in line with the values expected for an $S_N2$ reaction.

Study of Pr0.3Sr0.7CoxMn(1-x)O3 as the Cathode Materials for Intermediate Temperature SOFC (중.저온형 고체 산화물 연료전지의 공기극 물질로 사용되는 Pr0.3Sr0.7CoxMn(1-x)O3 (x=0, 0.3, 0.5, 0.7, 1)에 관한 연구)

  • Park, Kwang-Jin;Kim, Jung-Hyun;Bae, Joong-Myeon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.214-218
    • /
    • 2007
  • The decrease of polarization resistance in cathode is the key point for operating at intermediate temperature SOFC (solid oxide fuel cell). In this study, the influence of Co substitution in B-site at complex perovskite on the electronic conductivity of PSCM ($Pr_{0.3}Sr_{0.7}Co_xMn_{(1-x)}$) was investigated. The PSCM series exhibits excellent MIEC (mixed ionic electronic conductor) properties. The ASR (area specific resistance) of PSCM3773 was $0.174{\Omega}{\cdot}cm^2\;at\;700^{\circ}C$. The activation energy of PSCM3773 was also lower than other compositions of PSCM. The TEC(thermal expansion coefficient) was decreased by addition of Mn. The ASR values were increased gradually during the thermal cycling test of PSCM37773 due to the delamination between electrolyte and cathode materials. The delamination was caused by the difference of TEC.

Planarizaiton of Cu Interconnect using ECMP Process (전기화학 기계적 연마를 이용한 Cu 배선의 평탄화)

  • Jeong, Suk-Hoon;Seo, Heon-Deok;Park, Boum-Young;Park, Jae-Hong;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.213-217
    • /
    • 2007
  • Copper has been used as an interconnect material in the fabrication of semiconductor devices, because of its higher electrical conductivity and superior electro-migration resistance. Chemical mechanical polishing(CMP) technique is required to planarize the overburden Cu film in an interconnect process. Various problems such as dishing, erosion, and delamination are caused by the high pressure and chemical effects in the Cu CMP process. But these problems have to be solved for the fabrication of the next generation semiconductor devices. Therefore, new process which is electro-chemical mechanical polishing(ECMP) or electro-chemical mechanical planarization was introduced to solve the technical difficulties and problems in CMP process. In the ECMP process, Cu ions are dissolved electrochemically by the applying an anodic potential energy on the Cu surface in an electrolyte. And then, Cu complex layer are mechanically removed by the mechanical effects between pad and abrasive. This paper focuses on the manufacturing of ECMP system and its process. ECMP equipment which has better performance and stability was manufactured for the planarization process.

Monooxo-bridged Binuclear Molybdenum (V) Complexes (IV) (한 개 산소 가교 이핵몰리브덴 (V) 착물 (제4보))

  • Sang Oh Oh;Jong Dal Rhee
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.81-87
    • /
    • 1982
  • The monooxo-bridged binuclear molybdenum(V) complexes, $Mo_2O_3(NCS)_4(Bipy)_2\;(Bipy = bipyridine),\;Mo_2O_3(NCS)-4(Phen)-2$ (Phen = 1,10-phenanthroline), and $Mo_2O_3(NCS)_4(Ox)_2(OxH)_2$ (Ox = oxinato and OxH = oxine) have been prepared. Their electronic and IR spectra, electric conductivity, and magnetic susceptibility were measured. From the results all of th complexes turned out to be electroneutral dimers with about 0.5 BM, and in the oxine complex, $Mo_2O_3(NCS)_2(Ox)_2(OxH)_2$, the oxine seems to bind partly as monodentate and partly as bidentate molecule.

  • PDF

First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

  • Maidana, Carlos O.;Nieminen, Juha E.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.82-91
    • /
    • 2017
  • Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.