• Title/Summary/Keyword: Complex Communication

Search Result 1,611, Processing Time 0.023 seconds

Performance of selective combining according to channel selection decision method of frequency diversity in underwater frequency selective channel (수중 주파수 선택적 채널에서 주파수 다이버시티의 채널 선택 판정법에 따른 선택 합성법의 성능)

  • Lee, Chaehui;Jeong, Hyunsoo;Park, Kyu-Chil;Park, Jihyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.436-442
    • /
    • 2022
  • In this paper, the performance of the selective combining according to the channel selection decision method of frequency diversity is evaluated in the underwater frequency selective channel. The underwater acoustic channel in the shallow sea has a complex multipath characteristic by combining various environmental factors such as boundary surface reflection and sound wave refraction according to the water temperature layer. In particular, frequency selectivity due to multipath causes energy fluctuation in a communication channel, which reduces SNR (Signal to Noise Ratio) and deteriorates communication performance. In this paper, we applied the frequency diversity technique using multiple channels to secure the communication performance according to the frequency selectivity by multipath. For each channel, 4-FSK (Frequency Shift Keying) and selective combining were applied, the performance was evaluated by applying the maximum value, average value, and majority decision of the signal in order to decide the demodulation channel selection of the selective combining.

IoT Healthcare Communication System for IEEE 11073 PHD and IHE PCD-01 Integration Using CoAP

  • Li, Wei;Jung, Cheolwoo;Park, Jongtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1396-1414
    • /
    • 2018
  • With the proliferation of the Internet of Things (IoT) healthcare devices, significant interoperability issue arises where devices use proprietary data transfer protocols. The IHE PCD-01 standard has been suggested for the exchange of healthcare data in ISO/IEEE 11073 PHD data model. However, the PCD-01 is not efficient to be used in the IoT environment. This is because the use of SOAP for PCD-01 may be too complex to be implemented in the resource-constrained IoT healthcare devices. In this paper, we have designed a communication system to implement ISO/IEEE 11073 and IHE PCD-01 integration using the IETF CoAP. More specifically, we have designed the architecture and procedures, using CoAP, to seamlessly transmit the bio-signal from the tiny resource-constrained IoT healthcare devices to the server in a standardized way. We have also built the agent, gateway, and PCD-01 interface at the server, all of which are using the CoAP as a communication protocol. In order to evaluate the performance of the proposed system, we have used the PCD data to be transmitted over CoAP, MQTT, and HTTP. The evaluation of the system performance shows that the use of CoAP results in faster transaction and lesser cost than other protocols, with less battery power consumption.

A Study on Mobile Wireless Communication Network Optimization Using Global Search Algorithm (전역 탐색 알고리듬을 이용한 이동 무선통신 네트워크의 최적화에 대한 연구)

  • 김성곤
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.1
    • /
    • pp.87-93
    • /
    • 2004
  • In the design of mobile wireless communication network, BSC(Base Station Location), BSC(Base Station Controller) and MSC(Mobile Switching Center) are the most important parameters. Designing base station location, the cost must be minimized by combining various, complex parameters. We can solve this Problem by combining optimization algorithm, such as Simulated Annealing, Tabu Search, Genetic Algorithm, Random Walk Algorithm that have been used extensively for global optimization. This paper shows the 4 kinds of algorithm to be applied to the optimization of base station location for communication system and then compares, analyzes the results and shows optimization process of algorithm.

  • PDF

Unsupervised Real-time Obstacle Avoidance Technique based on a Hybrid Fuzzy Method for AUVs

  • Anwary, Arif Reza;Lee, Young-Il;Jung, Hee;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.82-86
    • /
    • 2008
  • The article presents ARTMAP and Fuzzy BK-Product approach underwater obstacle avoidance for the Autonomous underwater Vehicles (AUV). The AUV moves an unstructured area of underwater and could be met with obstacles in its way. The AUVs are equipped with complex sensorial systems like camera, aquatic sonar system, and transducers. A Neural integrated Fuzzy BK-Product controller, which integrates Fuzzy logic representation of the human thinking procedure with the learning capabilities of neural-networks (ARTMAP), is developed for obstacle avoidance in the case of unstructured areas. In this paper, ARTMAP-Fuzzy BK-Product controller architecture comprises of two distinct elements, are 1) Fuzzy Logic Membership Function and 2) Feed-Forward ART component. Feed-Forward ART component is used to understanding the unstructured underwater environment and Fuzzy BK-Product interpolates the Fuzzy rule set and after the defuzzyfication, the output is used to take the decision for safety direction to go for avoiding the obstacle collision with the AUV. An on-line reinforcement learning method is introduced which adapts the performance of the fuzzy units continuously to any changes in the environment and make decision for the optimal path from source to destination.

Examination of Organizational Communication and Culture as a Moderator of the Relationship between Job Satisfaction and Organizational Performance (직무 만족과 조직 성과의 관계 탐색 : 조직 커뮤니케이션과 조직 문화의 조절 효과)

  • Lee, Gunhyuk
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.4
    • /
    • pp.376-388
    • /
    • 2013
  • This study investigated the role of organizational communication, culture and trust as a moderator of the organizational performance(the growth of production and quality improvement) and job satisfaction. Using data collected from 248 workers at 128 establishments in Changwon industrial complex, morderated regression analyses explored the proposed model. As a result, communication activity and organizational trust was found negatively to moderate the relationship between job satisfaction and quality improvement/the growth of production. And organizational culture was found positively to moderate the relationship between satisfaction and quality improvement. Implications of these findings were discussed.

Performance analysis of Variable Rate Multi-carrier CDMA under an underwater acoustic channel (수중 음향 채널에서 가변 전송율 다중 반송파 CDMA의 성능 분석)

  • Kang, Hee-Hoon;Han, Wan-Ok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • As underwater channel is very complex and time-varying, don't supports good-quality for communication service. In this paper, a multi-carrier CDMA(MC-CDMA) system for the reliability and robust service in the underwater acoustic channel is proposed and analyzed for its performance. Applied variable rate algorithm to the proposed system gets a channel state information from relationship between SINR and user data-rate. Using channel state information make spectrum usage more efficient and overall system performance improved. In this paper, the performance of proposed system analyzed by simulation. And Pseudo-Random spread codes used in the system are discussed.

Experiments and its analysis on the Identification of Indoor Location by Visible Light Communication using LED lights (LED 조명 기반 가시광 무선 통신을 이용한 실내 위치 인식 실험 및 분석)

  • Kong, In-Yeup;Kim, Ho-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1045-1052
    • /
    • 2011
  • Recently, because of complex cultural space, underground space are becoming larger. Therefore, the demand for location-based services is growing. VLC (Visible Light Communication) is based on the LED lighting infrastructure so that suitable LBS (Location-based service) is possible for the targeted places in indoor space. To experiment with indoor LBS by VLC, we measure the identification distance according to variable angles between LED and photo diode. We send the different ASCII code for each LED light, then we found the maximum identification distance is 1.75m from LED lights. From the results of this experiment, we show that indoor navigation is possible.

On Dynamic Voltage Scale based Protocol for Low Power Underwater Secure Communication on Sensor Network (센서 네트워크 상에서의 저전력 보안 수중 통신을 위한 동작 전압 스케일 기반 암호화에 대한 연구)

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.586-594
    • /
    • 2014
  • Maximizing the operating time by reducing the power consumption is important factor to operate sensor network under water networks. For efficient power consumption, dynamic voltage scaling method is available. This method operates low frequency when there is no workload. In case of abundant workload, high frequency operation completes hard work within short time, reducing power consumption. For this reason, complex cryptography should be computed in high frequency. In this paper, we apply dynamic voltage scaling method to cryptography and show performance evaluation. With this result, we can reduce power consumption for cryptography in under water communication.

Maximizing Network Utilization in IEEE 802.21 Assisted Vertical Handover over Wireless Heterogeneous Networks

  • Pandey, Dinesh;Kim, Beom Hun;Gang, Hui-Seon;Kwon, Goo-Rak;Pyun, Jae-Young
    • Journal of Information Processing Systems
    • /
    • v.14 no.3
    • /
    • pp.771-789
    • /
    • 2018
  • In heterogeneous wireless networks supporting multi-access services, selecting the best network from among the possible heterogeneous connections and providing seamless service during handover for a higher Quality of Services (QoSs) is a big challenge. Thus, we need an intelligent vertical handover (VHO) decision using suitable network parameters. In the conventional VHOs, various network parameters (i.e., signal strength, bandwidth, dropping probability, monetary cost of service, and power consumption) have been used to measure network status and select the preferred network. Because of various parameter features defined in each wireless/mobile network, the parameter conversion between different networks is required for a handover decision. Therefore, the handover process is highly complex and the selection of parameters is always an issue. In this paper, we present how to maximize network utilization as more than one target network exists during VHO. Also, we show how network parameters can be imbedded into IEEE 802.21-based signaling procedures to provide seamless connectivity during a handover. The network simulation showed that QoS-effective target network selection could be achieved by choosing the suitable parameters from Layers 1 and 2 in each candidate network.

PSO-based Resource Allocation in Software-Defined Heterogeneous Cellular Networks

  • Gong, Wenrong;Pang, Lihua;Wang, Jing;Xia, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2243-2257
    • /
    • 2019
  • A heterogeneous cellular network (HCN) is useful to increase the spectral and energy efficiency of wireless networks and to reduce the traffic load from the macro cell. The performance of the secondary user equipment (SUE) is affected by interference from the eNodeB (eNB) in a macro cell. To decrease the interference between the macro cell and the small cell, allocating resources properly is essential to an HCN. This study considers the scenario of a software-defined heterogeneous cellular network and performs the resource allocation process. First, we show the system model of HCN and formulate the optimization problem. The optimization problem is a complex process including power and frequency resource allocation, which imposes an extremely high complexity to the HCN. Therefore, a hierarchical resource allocation scheme is proposed, which including subchannel selection and a particle swarm optimization (PSO)-based power allocation algorithm. Simulation results show that the proposed hierarchical scheme is effective in improving the system capacity and energy efficiency.