• Title/Summary/Keyword: Complex Coastal Area

Search Result 160, Processing Time 0.028 seconds

Spatio-temporal Variation and Evaluation of Benthic Healthiness of Macrobenthic Polychaetous Community on the Coast of Ulsan (울산 연안 해역 저서다모류 군집의 시·공간 변동 및 저서건강도 평가)

  • Jeong, Bong Geun;Shin, Hyun Chool
    • Ocean and Polar Research
    • /
    • v.40 no.4
    • /
    • pp.223-235
    • /
    • 2018
  • This study was carried out to investigate benthic sedimentary environments and benthic polychaetous communities on the coast of Ulsan, located on the southern East Sea of Korea. This survey was conducted at 15 stations, four times seasonally in January, April, July and October 2016. From the coast to the outer sea, surface sediments turned into fine grained sediments. There were complex coarse-grained sedimentary facies in various forms in the coastal zones while those with mud facies were found in the offshore zone. Organic matter content (LOI) and sulfide amount (AVS) recorded extremely high values, and increased from the coast to the outer sea, showing a similar trend to mud content with depth. The benthic polychaetous community revealed a mean density of $525ind./m^2$, and the total species number of species was 84. The major dominant polychaetous species were Magelona japonica, Lumbrineris longifolia and Heteromastus filiformis throughout the four seasons. Magelona japonica was concentrated predominantly in shallow coastal areas, but was present in all the regions of the survey area. Lumbrineris longifolia showed higher density in offshore regions more than 30 m deep, whereas H. filiformis showed higher density in coastal areas less than 30 m in depth. As a result of cluster analysis, the study area was divided into three ecological areas according to species composition, such as the northern coastal area between Ulsan PortOnsan Port, the southern area around Hoeya River and the outer sea area. Benthic environments in the study area, as determined by AMBI and BPI index, maintained a healthy condition in all four seasons with the AMBI at a level above GOOD and BPI at a level above FAIR. As organic matter accumulation continues to take place in the Ulsan coastal area, it is essential that detailed research activities continue to be carried out and ongoing monitoring be maintained.

Improvement in the Simulation of Sea Surface Wind over the Complex Coastal Area Using WRF Model (WRF 모형을 통한 복잡 연안지역에서의 해상풍 모의 개선)

  • Kim, Yoo-Keun;Jeong, Ju-Hee;Bae, Joo-Hyun;Oh, In-Bo;Kweon, Ji-Hye;Seo, Jang-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.3
    • /
    • pp.309-323
    • /
    • 2006
  • We focus on the improvement in the simulation of sea surface wind over complex coastal area located in the southeastern Korea. In this study, it was carried out sensitivity experiment based on PBL schemes and dynamic frame of MM5 and WRF. Two widely used PBL parameterization schemes were chosen : Medium-Range Forecast (MRF) and Mellor-Yamada-Janjic (MYJ). Thereafter, two cases of sea fog days with weak wind speed and typhoon days with strong wind speed were simulated and analyzed. The result of experiments indicated that wind fold of WRF model was shown more similar distribution with observational data, compared with that of MM5. Simulation of sea surface wind during sea fog days with weak wind speed and typhoon days with strong wind speed were shown similar horizontal distribution with observational data using MYJ and MRF PBL schemes of WRF model, respectively. Horizontal distribution of sea surface wind was more sensitive according to dynamic frame and PBL Schemes of model during sea fog days and typhoon days, respectively.

A Study on Chlorophyll Estimating Algorithm in Kwangyang bay Using Satellite Images

  • Jo, Myung-Hee;Suh, Young-Sang;Kim, Byoung-Suk
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.249-255
    • /
    • 1999
  • Water pollution is becoming a serious problem in the populous cities and coastal areas near industrial complex. Sometimes, phytoplankton is considered as the most important element in the coastal environment. Phytoplankton is easily estimated by measuring chlorophyll content in the laboratory. In this study, to build up estimating algorithm of the chlorophyll amount related to the monitoring of coastal environments in Kwangyang bay, the correlationship the respective in situ observed data with Landsat TM and SeaWiFS satellite Image was analyzed. It showed that Landsat TM band 3 image has the highest correlationship with observed data, and based upon this result the monitoring algorithm of chlorophyll in coastal area was extracted. This algorithm will be an important for extracting and controlling environment elements in coastal areas in the future. And it has a significant meaning that it has established a spatial data construction in which satellite image alone could monitor the coastal environment.

  • PDF

Discussion to Spatial Characteristics on a Sub-tidal Benthic Community Composed to the Complicated Coastal Lines Around Tongyeong, Korea (복잡한 해안선 구조를 가진 통영 해역에서 조하대 저서생물 군집의 공간특성 비교)

  • Yoon, Kon-Tak;Jung, Yun-Hwan;Kang, Rae-Seon
    • Ocean and Polar Research
    • /
    • v.32 no.2
    • /
    • pp.123-135
    • /
    • 2010
  • Around Tongyeong coasts which located in southern coast of Korea composed to the complex coastal line and scattered by small islands. It also has been distributed to a complicated bathymetric structure by several types of channels. This study carried to analyze the spatial characteristics of macrobenthic community and benthic environmental variance on sub-tidal area based on multivariate statistics tools. Sediment composition varied from muddy sand to mud, and along the channels, it composed to a heterogeneous bottoms mixed by shell fragment, cobbles and mud. Organic contents on the surface sediment varied 1.1-3.9%. Total of 272 species, $33,349\;ind./m^2$ of macrobenthos identified in all of sample area. Polychaetes also prevailed among the specimen. L. longifolia, P. pinnata dominated based on density. Considering on the biomass, echinoderm S. lacunosa, A. tricoides listed. Closer to the coastal area, the density and diversity were higher. Community structure based on cluster analysis was discriminated into three groups. Each group was also characterized by geographical state such as depth, sediment composition. In addition, when applied to the bathymetric data, the channel, which composed to the mixed sediment, made a role of limited factor which characterized to benthic community. Because the specimen around the channel have been affected on the diverse sediment mixture. Most of benthic studies in the southern coast of Korea focused to the condition of benthic organic pollution spatially, because along the coast, it also developed a aquaculture ground and industrial complex. But, as results, most of the area, it turn out the less polluted areas nevertheless similar environment situation. It supposed that benthic community affect to the bottom sediment composition by physical characteristics.

Coastal Circulation and Bottom Change due to Ocean Resort Complex Development

  • Kim, Pill-Sung;Lee, Joong-Woo;Kim, Jeong-Seok
    • Journal of Navigation and Port Research
    • /
    • v.36 no.7
    • /
    • pp.585-590
    • /
    • 2012
  • On the basis of the potentials for the growth of local economy and the result of investigation of the ocean space development status, an ocean resort complex was proposed at the small harbor with a parallel beach in the east coast of Korea. As the development plan needs to reclaim the noticeable amount of coastal water area together with the applied shore facilities, it is necessary to analyze their impacts. Here, it was intended to analyze the coastal environment change such as water circulation and bottom change because of the development plan. A horizontal two-dimensional numerical model was applied to represent the combined impact of wind waves and tidal currents to sediment transport in that coastal region. Based on the result of 30 days tidal current simulations considering major four tidal components of $M_2$,$S_2$,$K_1$ and $O_1$ for the upper and lower boundaries and wind field data, bottom change was discussed. Flow velocities were not changed much at outer breakwater of Yangpo harbor. Bottom was eroded by maximum 1.7m after construction but some locations such as lee side of outer breakwater and some islets near the entrance shows isolated accretions. Although it needs more field observations for bottom change in the period of construction, the numerical calculation shows that there exist small impacts near the entrance area and coastal boundaries because of the development.

The Change of Coastal Water Area due to the Development of Mokpo Harbor and Construction of Daebul Industrial Complex(I) (목포항 개발 및 대불 산업단지 조성에 따른 연안해역 변화(I)- 해면 정온도를 중심으로 -)

  • 이중우;정명선
    • Journal of the Korean Institute of Navigation
    • /
    • v.15 no.2
    • /
    • pp.87-96
    • /
    • 1991
  • The change of water level at Mokpo Harbour and its adjacent coastal area due to the construction of the Youngsan Estuary Barrage and the Third Land Reclamation Work of estuary barren had been roughly expected. Periodical floods, which occur 2 times per month, are also being observed at the low lying commercial areas near the Mokpo Old Harbor. Although it is said that the highest tidal current component among the tidal current records at the approaching channel to Mokpo Harbor is reduced to 6 kts, because of the esturary barrage, they do not give any precise statement or a deep analysis for the flooding and periodical water level change under certain environmental conditions. Moreover, they never tried the analysis of development plan considering the natural disaster such as typhoon or other extreme conditions. Thus, it is necessary to collect and analyze the data related to floodings, harbor oscillations, currents, and water quality , etc. because of the development considering the extreme condition. Thus, it is necessary to collect and analyze the data related to floodings, harbor oscillations, currents, and water quality, etc. because of the development considering the extreme condition and to evaluate the field observation and measurement, including the numerical model simulation based on the scientific approaches. This study deals the problem of the water level change among the integrated analyses of the coastal area changes. The result can be used for the integrated planning to give a strong foundation and it will contribute to the development of local area.

  • PDF

The Concentrations of Heavy Metals in Sediment Seawater and Oyster (Crassostrea gigas) in Coastal Region of Industrial Complex in Korea (한국 임해 공단 연안에서 퇴적물 해수 및 굴 (Crassostrea gigas)의 중금속 함량)

  • Lee, I.S.;B.j. Rho;J.I. Song;E.J. Kim
    • The Korean Journal of Ecology
    • /
    • v.19 no.3
    • /
    • pp.261-270
    • /
    • 1996
  • To investigate the degree of contamination from Korean coastal region, the concentrations of Cu, Pb, Zn and Cd in sediments, seawater and oyster (Crassostrea gigas) at Masan Bay, Onsan Bay, Daesan industrial complex and their control areas were analysed. Values for sediments, seawater and oyster in the industrial complex coastal region were higher than those in the control area except for seawater in Daesan. The values for dissolved phasc of Cu, Pb, Zn and Cd in seawater showed 0.3~1.75 ${\mu}g/l$, 0.013~0.12 ${\mu}g/l$, 0.20~6.14 ${\mu}g/l$ and 0.007~0.021 ${\mu}g/l$, respectively. The concentrations of Cu, Pb, Zn and Cd in sediments werd 12.0~47.8 ${\mu}g/g$, 6.16~59.5 ${\mu}g/g$, 43.0~230 ${\mu}g/g$ and 0.52~11.2 ${\mu}g/g$, respectively. The concentrations of Cu, Pb, Zn and Cd in oyster showed 12.1~85.6 ${\mu}g/g$, 0.267~1.48 ${\mu}g/g$, 1, 070~3, 250 ${\mu}g/g$ and 3.23~7.71 ${\mu}g/g$, respectively. The contents of heavy metals in oysters at industrial complex coastal region showed that they were not seriously contaminated compared with those of Mussel Watch (1992).

  • PDF

Cooperative Management Framework for the Transboundary Coastal Area in the Western Part of Korean Peninsula (서해연안 접경지역 현황 및 남북한 협력관리 방안)

  • Nam, Jung-Ho;Kang, Dae-Seok
    • Journal of Environmental Policy
    • /
    • v.3 no.2
    • /
    • pp.1-29
    • /
    • 2004
  • As a result of very limited access due to the military confrontation between South and North Koreas for the last five decades, ecosystems in the transboundary coastal area in the western part of Korean Peninsula have been protected from intensive developments in both Koreas. In the core of the recent two military collisions lies the fishery resources represented as blue crabs as well as the politico-military aspect. Increasing development pressures from both sides as reflected in the South Korea supporting the construction of an industrial complex in Kaesung, North Korea, is the main factor which threatens the sustainable resource base in this region. This research is aimed to develop a cooperative management system for the well-preserved transboundary coastal area between South Korea and North Korea. The Pressure-State-Response (PSR) framework of OECD was used to assess environmental conditions, socioeconomic pressures on the environment of the region, and policy responses of both Koreas to those pressures. Protection of ecosystems, peace settlement, and prosperity of the region and the entire peninsula were proposed as the management goals of the cooperative management system. The designation of the area as a Co-managed Marine Protected Area System (COMPAS) through close cooperation among South Korea, North Korea, and international entities was suggested as a way to achieve those goals. Revision of legal and institutional mechanisms, strengthening knowledge base for optimal COMPAS management, integration of the marine protected area and DMZ (demilitarized zone) ecosystem, enhancing stakeholder participation, building international partnership, and securing financial resources were presented as six management strategies.

  • PDF

Changes in Marine Environment by a Large Coastal Development of the Saemangeum Reclamation Project in Korea

  • Lie, Heung-Jae;Cho, Cheol-Ho;Lee, Seok;Kim, Eun-Soo;Koo, Bon-Joo;Noh, Jae-Hoon
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.475-484
    • /
    • 2008
  • The word 'Saemangeum' indicates an estuarine tidal flat in the southwestern part of the Korean peninsula. The Saemangeum Reclamation Project was launched as a national project in 1991 to reclaim a large coastal area of $401\;km^2$ by constructing a 33-km long dyke. The final dyke enclosure in April 2006 has transformed the tidal flat into lake and land. An integrated oceanographic study has been conducted since 2002 as a part of the Government Action Plan to monitor and assess changes in the marine environment. Prior to the dyke enclosure, the coastal environment in the Saemangeum was a complex system governed by tidal motion, estuarine processes, and coastal circulation of the Yellow Sea. The dyke construction has radically changed not only the estuarine tidal system inside the dyke, but also the coastal marine environment outside the dyke. Post to the dyke enclosure, subsequent changes such as red tide, hypoxia, and coastal erosion/deposition occur successively. Red tides appear almost the year round in the inner area. Even under the condition that the sluice gates are fully open, the water quality does not improve as much as the developers would expect, mainly due to the critical reduction of the hydrodynamic stirring power. We will introduce details of our monitoring program and significant changes in the Saemangeum marine environment, based on observations and model results.