• 제목/요약/키워드: Complete genome

검색결과 476건 처리시간 0.028초

The Complete Nucleotide Sequence of a Korean Isolate Bean yellow mosaic virus from Freesia sp. and Comparison to Other Potyviruses

  • Choi, Sun-Hee;Yoon, Ju-Yeon;Ryu, Ki-Hyun;Choi, Seung-Kook
    • 식물병연구
    • /
    • 제19권2호
    • /
    • pp.77-83
    • /
    • 2013
  • Bean yellow mosaic virus (BYMV; genus Potyvirus, family Potyviridae) causes severe losses to various legume species and a number of non-legume species, particularly freesia plants. In a survey of virus diseases in Gyeonggi province, Korea, BYMV isolates were identified from many cultivated freesia species. Here, we determined the complete nucleotide sequences of a BYMV freesia isolate (BYMV-Fr; accession number FJ492961). BYMV-Fr genome consists of 9,545 nucleotides (nt) excluding the poly (A) tail and encodes 3,057 amino acid (aa), with an AUG start and UAG stop codon, containing one open reading frame typical of a potyvirus polyprotein. The polyprotein of BYMV-Fr was divided to ten proteins and the cleavage sites of each protein were determined. The coat protein (CP) and polyprotein of BYMV-Fr were compared at the aa level with those of the previously reported 4 BYMV isolates. BYMV-Fr shared 90.1 to 97.1 and 91.0 to 92.5% at the CP and polyprotein homology. Interestingly, BYMV-Fr showed identities of a lower level at the nt level of 5' noncoding region (61.4 to 67.6%) and at the aa level of P1 (71.4 to 72.8%), comparing with four BYMV isolates. Based on the aa sequence diversity of CP and polyprotein, phylogenetic analysis with the four BYMV isolates showed two distinct groups and BYMV-Fr and most BYMV isolates were most closely related to the clover yellow vein virus among 52 potyviruses. To our knowledge, this is the first report of the complete genome sequence of BYMV freesia strain.

돼지 써코바이러스 2형 국내분리주의 유전학적 특성 규명 (Genetic characterization and phylogenetic analysis of porcine circovirus type 2 field strains isolated from Korean pocine circovirus disease (PCVD) pigs)

  • 김문;한정희
    • 한국동물위생학회지
    • /
    • 제32권1호
    • /
    • pp.1-10
    • /
    • 2009
  • In order to obtain the genetic information of the Korean isolates of porcine circovirus 2 (PCV2), complete genomes of five isolates from Korean PCVD weaned pigs with wasting syndromes were sequenced and compared with those of other published PCV2 isolates. Of the five PCV2 isolates, four (1767 nucleotides) were classified into PCV2b, and one (1,768 nucleotides) was PCV2a. Moreover, it appeared that PCV2b is now the dominant genotype circulating in Korea herds. Total complete genomes of four PCV2b isolates shared $99.1{\sim}99.4%$ nucleotide sequence homology each other, and were only $95.4{\sim}96.2%$ similar to one PCV2a isolate. ORF2 genome of four PCV2b isolates shared over 99% nucleotide sequence and deduced amino acid sequence identity to each other. Nevertheless, those were much divergent with the PCV2a isolate of this study and ranged from $92.3{\sim}92.7%$ nucleotide homology and $91.9{\sim}92.3%$ deduced amino acid sequence homology, respectively. The amino acid sequence alignments of the putative capsid protein identified three major regions of amino acid heterogeneity at residues $59{\sim}91$, $121{\sim}136$ and $190{\sim}210$. Two of those correspond with dominant immunoreactive areas. Phylogenetic analysis based on the complete genome of PCV2 isolates showed that four PCV2b isolates of this study existed the closest relationship with European strains (Netherland, UK and France). One PCV2a isolate was closely related to Japan and North America strains.

인디고 생산능을 가진 Azoarcus sp. TSPY31과 TSNA42의 유전체 분석 (Complete genome sequences of Azoarcus sp. TSPY31 and TSNA42 potentially having biosynthetic ability to produce indigo)

  • 김해선;차선호;석호영;박년호;우정희
    • 미생물학회지
    • /
    • 제54권3호
    • /
    • pp.283-285
    • /
    • 2018
  • 유류 오염된 해양 갯벌에서 분리한 다환방향수소족(PAHs)을 분해하는 균주들로부터 인디고로 생물전환 활성을 가진 것으로 예측되는 Azoarcus sp. TSPY31과 TSNA42 균주를 동정하였다. 이 두 균주의 유전체 분석을 실시한 결과, 모두 하나의 완전한 chromosome으로 구성되며, TSPY31은 총 4,572,082 bp에 G + C 함량은 63.2%로 이루어져 있고, TSNA42는 4,886,934 bp에 G + C 함량은 62.8%이었다. 이 두 균주 모두 인돌을 인디고로 전환하는 효소인 styrene monooxygenase를 각각 2 copy씩 보유하고 있는 것으로 확인되었다.

Genomics and LC-MS Reveal Diverse Active Secondary Metabolites in Bacillus amyloliquefaciens WS-8

  • Liu, Hongwei;Wang, Yana;Yang, Qingxia;Zhao, Wenya;Cui, Liting;Wang, Buqing;Zhang, Liping;Cheng, Huicai;Song, Shuishan;Zhang, Liping
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권3호
    • /
    • pp.417-426
    • /
    • 2020
  • Bacillus amyloliquefaciens is an important plant disease-preventing and growth-promoting microorganism. B. amyloliquefaciens WS-8 can stimulate plant growth and has strong antifungal properties. In this study, we sequenced the complete genome of B. amyloliquefaciens WS-8 by Pacific Biosciences RSII (PacBio) Single Molecule Real-Time (SMRT) sequencing. The genome consists of one chromosome (3,929,787 bp) and no additional plasmids. The main bacteriostatic substances were determined by genome, transcriptome, and mass spectrometry data. We thereby laid a theoretical foundation for the utilization of the strain. By genomic analysis, we identified 19 putative biosynthetic gene clusters for secondary metabolites, most of which are potentially involved in the biosynthesis of numerous bioactive metabolites, including difficidin, fengycin, and surfactin. Furthermore, a potential class II lanthipeptide biosynthetic gene cluster and genes that are involved in auxin biosynthesis were found. Through the analysis of transcriptome data, we found that the key bacteriostatic genes, as predicted in the genome, exhibited different levels of mRNA expression. Through metabolite isolation, purification, and exposure experiments, we found that a variety of metabolites of WS-8 exert an inhibitory effect on the necrotrophic fungus Botrytis cinerea, which causes gray mold; by mass spectrometry, we found that the main substances are mainly iturins and fengycins. Therefore, this strain has the potential to be utilized as an antifungal agent in agriculture.

De novo genome assembly and single nucleotide variations for Soybean yellow common mosaic virus using soybean flower bud transcriptome data

  • Jo, Yeonhwa;Choi, Hoseong;Kim, Sang-Min;Lee, Bong Choon;Cho, Won Kyong
    • Journal of Applied Biological Chemistry
    • /
    • 제63권3호
    • /
    • pp.189-195
    • /
    • 2020
  • The soybean (Glycine max L.), also known as the soya bean, is an economically important legume species. Pathogens are always major threats for soybean cultivation. Several pathogens negatively affect soybean production. The soybean is also known as a susceptible host to many viruses. Recently, we carried out systematic analyses to identify viruses infecting soybeans using soybean transcriptome data. Our screening results showed that only few soybean transcriptomes contained virus-associated sequences. In this study, we further carried out bioinformatics analyses using a soybean flower bud transcriptome for virus identification, genome assembly, and single nucleotide variations (SNVs). We assembled the genome of Soybean yellow common mosaic virus (SYCMV) isolate China and revealed two SNVs. Phylogenetic analyses using three viral proteins suggested that SYCMV isolate China is closely related to SYCMV isolates from South Korea. Furthermore, we found that replication and mutation of SYCMV is relatively low, which might be associated with flower bud tissue. The most interesting finding was that SYCMV was not detected in the cytoplasmic male sterility (CMS) line derived from the non-CMS line that was severely infected by SYCMV. In summary, in silico analyses identified SYCMV from the soybean flower bud transcriptome, and a nearly complete genome of SYCMV was successfully assembled. Our results suggest that the low level of virus replication and mutation for SYCMV might be associated with plant tissues. Moreover, we provide the first evidence that male sterility might be used to eliminate viruses in crop plants.

Comparative Genome Analysis of Rathayibacter tritici NCPPB 1953 with Rathayibacter toxicus Strains Can Facilitate Studies on Mechanisms of Nematode Association and Host Infection

  • Park, Jungwook;Lee, Pyeong An;Lee, Hyun-Hee;Choi, Kihyuck;Lee, Seon-Woo;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • 제33권4호
    • /
    • pp.370-381
    • /
    • 2017
  • Rathayibacter tritici, which is a Gram positive, plant pathogenic, non-motile, and rod-shaped bacterium, causes spike blight in wheat and barley. For successful pathogenesis, R. tritici is associated with Anguina tritici, a nematode, which produces seed galls (ear cockles) in certain plant varieties and facilitates spread of infection. Despite significant efforts, little research is available on the mechanism of disease or bacteria-nematode association of this bacterium due to lack of genomic information. Here, we report the first complete genome sequence of R. tritici NCPPB 1953 with diverse features of this strain. The whole genome consists of one circular chromosome of 3,354,681 bp with a GC content of 69.48%. A total of 2,979 genes were predicted, comprising 2,866 protein coding genes and 49 RNA genes. The comparative genomic analyses between R. tritici NCPPB 1953 and R. toxicus strains identified 1,052 specific genes in R. tritici NCPPB 1953. Using the BlastKOALA database, we revealed that the flexible genome of R. tritici NCPPB 1953 is highly enriched in 'Environmental Information Processing' system and metabolic processes for diverse substrates. Furthermore, many specific genes of R. tritici NCPPB 1953 are distributed in substrate-binding proteins for extracellular signals including saccharides, lipids, phosphates, amino acids and metallic cations. These data provides clues on rapid and stable colonization of R. tritici for disease mechanism and nematode association.

Comparative Genomic Analysis and BTEX Degradation Pathways of a Thermotolerant Cupriavidus cauae PHS1

  • Chandran Sathesh-Prabu;Jihoon Woo;Yuchan Kim;Suk Min Kim;Sun Bok Lee;Che Ok Jeon;Donghyuk Kim;Sung Kuk Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권7호
    • /
    • pp.875-885
    • /
    • 2023
  • Volatile organic compounds such as benzene, toluene, ethylbenzene, and isomers of xylenes (BTEX) constitute a group of monoaromatic compounds that are found in petroleum and have been classified as priority pollutants. In this study, based on its newly sequenced genome, we reclassified the previously identified BTEX-degrading thermotolerant strain Ralstonia sp. PHS1 as Cupriavidus cauae PHS1. Also presented are the complete genome sequence of C. cauae PHS1, its annotation, species delineation, and a comparative analysis of the BTEX-degrading gene cluster. Moreover, we cloned and characterized the BTEX-degrading pathway genes in C. cauae PHS1, the BTEX-degrading gene cluster of which consists of two monooxygenases and meta-cleavage genes. A genome-wide investigation of the PHS1 coding sequence and the experimentally confirmed regioselectivity of the toluene monooxygenases and catechol 2,3-dioxygenase allowed us to reconstruct the BTEX degradation pathway. The degradation of BTEX begins with aromatic ring hydroxylation, followed by ring cleavage, and eventually enters the core carbon metabolism. The information provided here on the genome and BTEX-degrading pathway of the thermotolerant strain C. cauae PHS1 could be useful in constructing an efficient production host.

유전체 상호간의 BLAST 최대 히트(best-hit)를 사용하여 서열화가 완성된 다수의 유전체로부터 Orthologous 단백질그룹을 자동적으로 클러스터링하는 기법 (Automatic Orthologous-Protein-Clustering from Multiple Complete-Genomes by the Best Reciprocal BLAST Hits)

  • 김선신;이충세;류근호
    • 정보처리학회논문지D
    • /
    • 제13D권2호
    • /
    • pp.207-214
    • /
    • 2006
  • 서열화가 완성된 유전체의 수가 최근에 빠르게 상승하고 있지만, 상동성에 의한 단백질 기능을 예측하는 방법은 충분히 연구되고 있지 않다. 서열화가 완성된 다수의 유전체로부터 유전체 상호간의 BLAST 최대 히트(best-hit)를 사용하여 OPCs(Orthologous Protein Clusters)를 만드는 일은 성공적으로 연구되어 왔다. 그러나 OPCs를 수작업으로 구축하는 것은 시간과 노력이 많이 드는 일이다. 이 논문에서 우리는 서열화가 완성된 다수의 유전체로부터 OPs(Orthologous Proteins)를 클러스터링하는 자동화 방법을 제시하고, 해당 클러스터링의 타당성을 수학적으로 증명 한다.

Comparative Analysis of Chloroplast Genome of Dysphania ambrosioides (L.) Mosyakin & Clemants Understanding Phylogenetic Relationship in Genus Dysphania R. Br.

  • Kim, Yongsung;Park, Jongsun;Chung, Youngjae
    • 한국자원식물학회지
    • /
    • 제32권6호
    • /
    • pp.644-668
    • /
    • 2019
  • Dysphania ambrosioides (L.) Mosyakin & Clemants which belongs to Chenopodiaceae/Amaranthaceae sensu in APG system has been known as a useful plant in various fields as well as an invasive species spreading all over the world. To understand its phylogenetic relationship with neighbour species, we completed chloroplast genome of D. ambrosioides collected in Korea. Its length is 151,689 bp consisting of four sub-regions: 83,421 bp of large single copy (LSC) and 18,062 bp of small single copy (SSC) regions are separated by 25,103 bp of inverted repeat (IR) regions. 128 genes (84 protein-coding genes, eight rRNAs, and 36 tRNAs) were annotated. The overall GC content of the chloroplast genome is 36.9% and those in the LSC, SSC and IR regions are 34.9%, 30.3%, and 42.7%, respectively. Distribution of simple sequence repeats are similar to those of the other two Dysphania chloroplasts; however, different features can be utilized for population genetics. Nucleotide diversity of Dysphania chloroplast genomes 18 genes including two ribosomal RNAs contains high nucleotide diversity peaks, which may be genus or species-specific manner. Phylogenetic tree presents that D. ambrosioides occupied a basal position in genus Dysphania and phylogenetic relation of tribe level is presented clearly with complete chloroplast genomes.

REPEATOME: A Database for Repeat Element Comparative Analysis in Human and Chimpanzee

  • Woo, Tae-Ha;Hong, Tae-Hui;Kim, Sang-Soo;Chung, Won-Hyong;Kang, Hyo-Jin;Kim, Chang-Bae;Seo, Jung-Min
    • Genomics & Informatics
    • /
    • 제5권4호
    • /
    • pp.179-187
    • /
    • 2007
  • An increasing number of primate genomes are being sequenced. A direct comparison of repeat elements in human genes and their corresponding chimpanzee orthologs will not only give information on their evolution, but also shed light on the major evolutionary events that shaped our species. We have developed REPEATOME to enable visualization and subsequent comparisons of human and chimpanzee repeat elements. REPEATOME (http://www.repeatome.org/) provides easy access to a complete repeat element map of the human genome, as well as repeat element-associated information. It provides a convenient and effective way to access the repeat elements within or spanning the functional regions in human and chimpanzee genome sequences. REPEATOME includes information to compare repeat elements and gene structures of human genes and their counterparts in chimpanzee. This database can be accessed using comparative search options such as intersection, union, and difference to find lineage-specific or common repeat elements. REPEATOME allows researchers to perform visualization and comparative analysis of repeat elements in human and chimpanzee.