DOI QR코드

DOI QR Code

Comparative Genomic Analysis and BTEX Degradation Pathways of a Thermotolerant Cupriavidus cauae PHS1

  • Chandran Sathesh-Prabu (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Jihoon Woo (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Yuchan Kim (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Suk Min Kim (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Sun Bok Lee (Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Che Ok Jeon (Department of Life Science, Chung-Ang University) ;
  • Donghyuk Kim (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Sung Kuk Lee (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2023.01.04
  • Accepted : 2023.03.31
  • Published : 2023.07.28

Abstract

Volatile organic compounds such as benzene, toluene, ethylbenzene, and isomers of xylenes (BTEX) constitute a group of monoaromatic compounds that are found in petroleum and have been classified as priority pollutants. In this study, based on its newly sequenced genome, we reclassified the previously identified BTEX-degrading thermotolerant strain Ralstonia sp. PHS1 as Cupriavidus cauae PHS1. Also presented are the complete genome sequence of C. cauae PHS1, its annotation, species delineation, and a comparative analysis of the BTEX-degrading gene cluster. Moreover, we cloned and characterized the BTEX-degrading pathway genes in C. cauae PHS1, the BTEX-degrading gene cluster of which consists of two monooxygenases and meta-cleavage genes. A genome-wide investigation of the PHS1 coding sequence and the experimentally confirmed regioselectivity of the toluene monooxygenases and catechol 2,3-dioxygenase allowed us to reconstruct the BTEX degradation pathway. The degradation of BTEX begins with aromatic ring hydroxylation, followed by ring cleavage, and eventually enters the core carbon metabolism. The information provided here on the genome and BTEX-degrading pathway of the thermotolerant strain C. cauae PHS1 could be useful in constructing an efficient production host.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (MSIT) (2020R1A4A1018332 and 2015M3D3A1A01064919). This research was also supported by the Innovative Science Project of the Circle Foundation in 2020.

References

  1. Adipah S. 2019. Introduction of petroleum hydrocarbons contaminants and its human effects. J. Environ. Sci. Public Health 3: 1-9.
  2. U.S. EPA. 2004. Cleaning Up the Nation's Waste Sites: Markets and Technology Trends, 2004 edition. 2004th Ed. Office of Solid Waste And Emergency Response, EPAU.S. EPA/National Service Center for Environmental Publications (NSCEP), Cincinnati, OH.
  3. Williams S., Ladd D., Farmer J. 2006. Scientific investigations report 2005-5104 Fate and Transport of petroleum hydrocarbons in soil and ground water at big south fork national river and recreation area, Tennessee and Kentucky, 2002-2003. U.S. Geol. Surv. Sci. Investig. Rep. 2005-5104, 29.
  4. Somboon K, Doble A, Bulmer D, Basle A, Khalid S, van den Berg B. 2020. Uptake of monoaromatic hydrocarbons during biodegradation by FadL channel-mediated lateral diffusion. Nat. Commun. 11: 6331.
  5. You J, Du M, Chen H, Zhang X, Zhang S, Chen J, et al. 2018. BTEX degradation by a newly isolated bacterium: performance, kinetics, and mechanism. Int. Biodeterior. Biodegrad. 129: 202-208. https://doi.org/10.1016/j.ibiod.2018.02.012
  6. Jiang B, Zhou Z, Dong Y, Tao W, Wang B, Jiang J, et al. 2015. Biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Comamonas sp. JB. Appl. Biochem. Biotechnol. 176: 1700-1708. https://doi.org/10.1007/s12010-015-1671-6
  7. Lee SH, Jin HM, Lee HJ, Kim JM, Jeon CO. 2012. Complete genome sequence of the BTEX-degrading bacterium Pseudoxanthomonas spadix BD-a59. J. Bacteriol. 194: 544.
  8. Lee SK, Lee SB. 2001. Isolation and characterization of a thermotolerant bacterium Ralstonia sp. strain PHS1 that degrades benzene, toluene, ethylbenzene, and o-xylene. Appl. Microbiol. Biotechnol. 56: 270-275. https://doi.org/10.1007/s002530100608
  9. Meyer-Cifuentes I, Martinez-Lavanchy PM, Marin-Cevada V, Bohnke S, Harms H, Muller JA, et al. 2017. Isolation and characterization of Magnetospirillum sp. strain 15-1 as a representative anaerobic toluene-degrader from a constructed wetland model. PLoS One 12: e0174750.
  10. Surendra SV, Mahalingam BL, Velan M. 2017. Degradation of monoaromatics by Bacillus pumilus MVSV3. Braz. Arch. Biol. Technol. 60: 16160319.
  11. Wongbunmak A, Khiawjan S, Suphantharika M, Pongtharangkul T. 2017. BTEX- and naphthalene-degrading bacterium Microbacterium esteraromaticum strain SBS1-7 isolated from estuarine sediment. J. Hazard. Mater. 339: 82-90. https://doi.org/10.1016/j.jhazmat.2017.06.016
  12. Wongbunmak A, Khiawjan S, Suphantharika M, Pongtharangkul T. 2020. BTEX biodegradation by Bacillus amyloliquefaciens subsp. plantarum W1 and its proposed BTEX biodegradation pathways. Sci. Rep. 10: 17408.
  13. Yrjala K, Paulin L, Romantschuk M. 1997. Novel organization of catechol meta-pathway genes in Sphingomonas sp. HV3 pSKY4 plasmid. FEMS Microbiol. Lett. 154: 403-408. https://doi.org/10.1016/S0378-1097(97)00360-1
  14. Zhang S, You J, Kennes C, Cheng Z, Ye J, Chen D, et al. 2018. Current advances of VOCs degradation by bioelectrochemical systems: a review. Chem. Eng. J. 334: 2625-2637. https://doi.org/10.1016/j.cej.2017.11.014
  15. Lee Y, Lee Y, Jeon CO. 2019. Biodegradation of naphthalene, BTEX, and aliphatic hydrocarbons by Paraburkholderia aromaticivorans BN5 isolated from petroleum-contaminated soil. Sci. Rep. 9: 860.
  16. El-Naas MH, Acio JA, El Telib AE. 2014. Aerobic biodegradation of BTEX: progresses and prospects. J. Environ. Chem. Eng. 2: 1104-1122. https://doi.org/10.1016/j.jece.2014.04.009
  17. Lee K, Gibson DT. 1996. Toluene and ethylbenzene oxidation by purified naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl. Environ. Microbiol. 62: 3101-3106. https://doi.org/10.1128/aem.62.9.3101-3106.1996
  18. Buhler B, Witholt B, Hauer B, Schmid A. 2002. Characterization and application of xylene monooxygenase for multistep biocatalysis. Appl. Environ. Microbiol. 68: 560-568. https://doi.org/10.1128/AEM.68.2.560-568.2002
  19. Yu H, Kim BJ, Rittmann BE. 2001. The roles of intermediates in biodegradation of benzene, toluene, and p-xylene by Pseudomonas putida F1. Biodegradation 12: 455-463. https://doi.org/10.1023/A:1015008627732
  20. Bickerdike SR, Holt RA, Stephens GM. 1997. Evidence for metabolism of o-xylene by simultaneous ring and methyl group oxidation in a new soil isolate. Microbiology 143: 2321-2329. https://doi.org/10.1099/00221287-143-7-2321
  21. Lee SK, Lee SB. 2002. Substrate utilization patterns during BTEX biodegradation by an o-xylene-degrading bacterium Ralstonia sp. PHS1. J. Microbiol. Biotechnol. 12: 909-915.
  22. Jeong E, Hirai M, Shoda M. 2008. Removal of O-xylene using biofilter inoculated with Rhodococcus sp. BTO62. J. Hazard. Mater. 152: 140-147. https://doi.org/10.1016/j.jhazmat.2007.06.078
  23. Taki H, Syutsubo K, Mattison RG, Harayama S. 2007. Identification and characterization of o-xylene-degrading Rhodococcus spp. which were dominant species in the remediation of o-xylene-contaminated soils. Biodegradation 18: 17-26. https://doi.org/10.1007/s10532-005-9030-x
  24. Bertoni G, Bolognese F, Galli E, Barbieri P. 1996. Cloning of the genes for and characterization of the early stages of toluene and o-xylene catabolism in Pseudomonas stutzeri OX1. Appl. Environ. Microbiol. 62: 3704-3711. https://doi.org/10.1128/aem.62.10.3704-3711.1996
  25. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, et al. 2003. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31: 365-370. https://doi.org/10.1093/nar/gkg095
  26. Buchfink B, Reuter K, Drost HG. 2021. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18: 366-368. https://doi.org/10.1038/s41592-021-01101-x
  27. Galperin MY, Wolf YI, Makarova KS, Alvarez R V, Landsman D, Koonin E V. 2021. COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res. 49: D274-D281. https://doi.org/10.1093/nar/gkaa1018
  28. Jeske L, Placzek S, Schomburg I, Chang A, Schomburg D. 2019. BRENDA in 2019: a European ELIXIR core data resource. Nucleic Acids Res. 47: D542-D549. https://doi.org/10.1093/nar/gky1048
  29. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44: D457-D462. https://doi.org/10.1093/nar/gkv1070
  30. Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G, Winsor GL, et al. 2017. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 45: W30-W35. https://doi.org/10.1093/nar/gkx343
  31. Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38: 3022-3027. https://doi.org/10.1093/molbev/msab120
  32. Kim J, Na SI, Kim D, Chun J. 2021. UBCG2: up-to-date bacterial core genes and pipeline for phylogenomic analysis. J. Microbiol. 59: 609-615. https://doi.org/10.1007/s12275-021-1231-4
  33. Lee I, Kim YO, Park SC, Chun J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66: 1100-1103. https://doi.org/10.1099/ijsem.0.000760
  34. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60.
  35. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68: 461-466. https://doi.org/10.1099/ijsem.0.002516
  36. Wang X, Chen M, Xiao J, Hao L, Crowley DE, Zhang Z, et al. 2015. Genome sequence analysis of the naphthenic acid degrading and metal resistant bacterium Cupriavidus gilardii CR3. PLoS One 10: e0132881.
  37. Ensley BD, Ratzkin BJ, Osslund TD, Simon MJ, Wackett LP, Gibson DT. 1983. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222: 167-169. https://doi.org/10.1126/science.6353574
  38. Arenghi FLG, Berlanda D, Galli E, Sello G, Barbieri P. 2001. Organization and Regulation of meta cleavage pathway genes for toluene and o-xylene derivative degradation in Pseudomonas stutzeri OX1. Appl. Environ. Microbiol. 67: 3304-3308. https://doi.org/10.1128/AEM.67.7.3304-3308.2001
  39. Kaschabek SR, Kasberg T, Muller D, Mars AE, Janssen DB, Reineke W. 1998. Degradation of chloroaromatics: purification and characterization of a novel type of chlorocatechol 2,3-dioxygenase of Pseudomonas putida GJ31. J. Bacteriol. 180: 296-302. https://doi.org/10.1128/JB.180.2.296-302.1998
  40. Choi EJ, Jin HM, Lee SH, Math RK, Madsen EL, Jeon CO. 2013. Comparative genomic analysis and benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) degradation pathways of Pseudoxanthomonas spadix BD-a59. Appl. Environ. Microbiol 79: 663-671. https://doi.org/10.1128/AEM.02809-12
  41. Espinoza Tofalos A, Daghio M, Gonzalez M, Papacchini M, Franzetti A, Seeger M. 2018. Toluene degradation by Cupriavidus metallidurans CH34 in nitrate-reducing conditions and in bioelectrochemical systems. FEMS Microbiol. Lett. 365: fny119.
  42. Kumar A, Dewulf J, Luvsanjamba M, Van Langenhove H. 2008. Continuous operation of membrane bioreactor treating toluene vapors by Burkholderia vietnamiensis G4. Chem. Eng. J. 140: 193-200. https://doi.org/10.1016/j.cej.2007.09.039
  43. Perez-Pantoja D, De la Iglesia R, Pieper DH, Gonzalez B. 2008. Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol. Rev. 32: 736-794. https://doi.org/10.1111/j.1574-6976.2008.00122.x
  44. Shingler V, Powlowski J, Marklund U. 1992. Nucleotide-sequence and functional-analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain-Cf600. J. Bacteriol. 174: 711-724. https://doi.org/10.1128/jb.174.3.711-724.1992
  45. Tinberg CE, Song WJ, Izzo V, Lippard SJ. 2011. Multiple roles of component proteins in bacterial multicomponent monooxygenases: phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas sp. OX1. Biochemistry 50: 1788-1798. https://doi.org/10.1021/bi200028z
  46. Hou YJ, Guo Y, Li DF, Zhou NY. 2021. Structural and biochemical analysis reveals a distinct catalytic site of salicylate 5-monooxygenase NagGH from Rieske dioxygenases. Appl. Environ. Microbiol. 87: e01629-20.
  47. Karlsson A, Parales J V, Parales RE, Gibson DT, Eklund H, Ramaswamy S. 2003. Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron. Science 299: 1039-1042. https://doi.org/10.1126/science.1078020
  48. Xu JR, Zhang Y. 2010. How significant is a protein structure similarity with TM-score=0.5? Bioinformatics 26: 889-895. https://doi.org/10.1093/bioinformatics/btq066
  49. Kim M, Oh HS, Park SC, Chun J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64: 346-351. https://doi.org/10.1099/ijs.0.059774-0
  50. Moreno-Hagelsieb G, Latimer K. 2008. Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics 24: 319-324. https://doi.org/10.1093/bioinformatics/btm585
  51. Burbank LP, Van Horn CR. 2017. Conjugative plasmid transfer in Xylella fastidiosa is dependent on tra and trb operon functions. J. Bacteriol. 199: e00388-17
  52. Newman LM, Wackett LP. 1995. Purification and characterization of toluene 2-monooxygenase from Burkholderia cepacia G4. Biochemistry 34: 14066-14076. https://doi.org/10.1021/bi00043a012
  53. Cafaro V, Izzo V, Scognamiglio R, Notomista E, Capasso P, Casbarra A, et al. 2004. Phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1: interplay between two enzymes. Appl. Environ. Microbiol. 70: 2211-2219. https://doi.org/10.1128/AEM.70.4.2211-2219.2004
  54. Arai H, Akahira S, Ohishi T, Maeda M, Kudo T. 1998. Adaptation of Comamonas testosteroni TA441 to utilize phenol: organization and regulation of the genes involved in phenol degradation. Microbiology 144: 2895-2903. https://doi.org/10.1099/00221287-144-10-2895
  55. Nordlund I, Powlowski J, Shingler V. 1990. Complete nucleotide sequence and polypeptide analysis of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J. Bacteriol. 172: 6826-6833. https://doi.org/10.1128/jb.172.12.6826-6833.1990
  56. Shields MS, Reagin MJ, Gerger RR, Campbell R, Somerville C. 1995. TOM, a new aromatic degradative plasmid from Burkholderia (Pseudomonas) cepacia G4. Appl. Environ. Microbiol. 61: 1352-1356. https://doi.org/10.1128/aem.61.4.1352-1356.1995
  57. Fox BG, Shanklin J, Somerville C, Munck E. 1993. Stearoyl-acyl carrier protein delta 9 desaturase from Ricinus communis is a diironoxo protein. Proc. Natl. Acad. Sci. USA 90: 2486.
  58. Johnson GR, Olsen RH. 1997. Multiple pathways for toluene degradation in Burkholderia sp. strain JS150. Appl. Environ. Microbiol. 63: 4047.
  59. Harayama S, Polissi A, Rekik M. 1991. Divergent evolution of chloroplast-type ferredoxins. FEBS Lett. 285: 85-88. https://doi.org/10.1016/0014-5793(91)80730-Q
  60. Laurie AD, Lloyd-Jones G. 1999. Conserved and hybrid meta-cleavage operons from PAH-degrading Burkholderia RP007. Biochem. Biophys. Res. Commun. 262: 308-314. https://doi.org/10.1006/bbrc.1999.1153
  61. Arai H, Ohishi T, Chang MY, Kudo T. 2000. Arrangement and regulation of the genes for meta-pathway enzymes required for degradation of phenol in Comamonas testosteroni TA441. Microbiology 146 (Pt 7): 1707-1715. https://doi.org/10.1099/00221287-146-7-1707
  62. Perez-Pantoja D, Donoso R, Agullo L, Cordova M, Seeger M, Pieper DH, et al. 2012. Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environ. Microbiol. 14: 1091-1117. https://doi.org/10.1111/j.1462-2920.2011.02613.x
  63. Romine MF, Stillwell LC, Wong KK, Thurston SJ, Sisk EC, Sensen C, et al. 1999. Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J. Bacteriol. 181: 1585.
  64. Erickson BD, Mondello FJ. 1992. Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a multicomponent polychlorinated-biphenyl-degrading enzyme in Pseudomonas strain LB400. J. Bacteriol. 174: 2903.
  65. Froland WA, Andersson KK, Lee SK, Liu Y, Lipscomb JD. 1992. Methane monooxygenase component B and reductase alter the regioselectivity of the hydroxylase component-catalyzed reactions. A novel role for protein-protein interactions in an oxygenase mechanism. J. Biol. Chem. 267: 17588-17597. https://doi.org/10.1016/S0021-9258(19)37083-8
  66. Mason JR, Cammack R. 1992. The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu. Rev. Microbiol. 46: 277-305. https://doi.org/10.1146/annurev.mi.46.100192.001425
  67. Kitayama A, Suzuki E, Kawakami Y, Nagamune T. 1996. Gene organization and low regiospecificity in aromatic-ring hydroxylation of a benzene monooxygenase of Pseudomonas aeruginosa JI104. J. Ferment. Bioeng. 82: 421-425. https://doi.org/10.1016/S0922-338X(97)86976-0
  68. Olsen RH, Kukor JJ, Kaphammer B. 1994. A novel toluene-3-monooxygenase pathway cloned from Pseudomonas pickettii PKO1. J. Bacteriol. 176: 3749-3756. https://doi.org/10.1128/jb.176.12.3749-3756.1994
  69. Mitchell KH, Studts JM, Fox BG. 2002. Combined participation of hydroxylase active site residues and effector protein binding in a para to ortho modulation of toluene 4-monooxygenase regiospecificity. Biochemistry 41: 3176-3188. https://doi.org/10.1021/bi012036p
  70. Bertoni G, Martino M, Galli E, Barbieri P. 1998. Analysis of the gene cluster encoding toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1. Appl. Environ. Microbiol. 64: 3626-3632. https://doi.org/10.1128/AEM.64.10.3626-3632.1998
  71. Jiang T, Wang W, Han B. 2013. Catalytic hydroxylation of benzene to phenol with hydrogen peroxide using catalysts based on molecular sieves. New J. Chem. 37: 1654-1664. https://doi.org/10.1039/c3nj41163j
  72. Barbieri P, Palladino L, Di Gennaro P, Galli E. 1993. Alternative pathways for o-xylene or m-xylene and p-xylene degradation in a Pseudomonas stutzeri strain. Biodegrad. 4: 71-80. https://doi.org/10.1007/BF00702323
  73. Fowler SJ, Gutierrez-Zamora ML, Manefield M, Gieg LM. 2014. Identification of toluene degraders in a methanogenic enrichment culture. FEMS Microbiol. Ecol. 89: 625-636. https://doi.org/10.1111/1574-6941.12364
  74. Kahng HY, Malinverni JC, Majko MM, Kukor JJ. 2001. Genetic and functional analysis of the tbc operons for catabolism of alkyl- and chloroaromatic compounds in Burkholderia sp. strain JS150. Appl. Environ. Microbiol. 67: 4805-4816. https://doi.org/10.1128/AEM.67.10.4805-4816.2001
  75. Siani L, Viggiani A, Notomista E, Pezzella A, Di Donato A. 2006. The role of residue Thr249 in modulating the catalytic efficiency and substrate specificity of catechol-2,3-dioxygenase from Pseudomonas stutzeri OX1. FEBS J. 273: 2963-2976. https://doi.org/10.1111/j.1742-4658.2006.05307.x
  76. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. 2009. Circos: an information aesthetic for comparative genomics. Genome Res. 19: 1639-1645. https://doi.org/10.1101/gr.092759.109