• Title/Summary/Keyword: Compensator Roll

Search Result 14, Processing Time 0.027 seconds

Register Control on Compensator Roll type Converting Machines (보상롤 타입 컨버팅 머신의 레지스터 제어)

  • Kang Hyun-Kyoo;Kim Jung-In;Shin Kee-Hyun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.323-324
    • /
    • 2006
  • This paper presents dynamics of register error on a compensator roll type converting machine. Though a register control is an important aspect of a converting machine, it has not been taken into account as a main subject. Lately, demands for high speed converting machines over 500mpm(m/min) are raising but domestic converting industries can not come up with the high speed machines because capacities fur designing of the converting machine is restricted lower than 300mpm. Moreover register control is the key to product flexible displays through roll-to-roll systems. In this paper, a compensator roll type register controller is analyzed using mathematical model of register error. A case study for reducing transient register errors is discussed.

  • PDF

Gravity Compensator for the Roll-pitch Rotation (Roll-pitch 중력 보상 기구 설계)

  • Cho, Chang-Hyun;Lee, Woo-Sub;Kang, Sung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.688-694
    • /
    • 2010
  • This paper presents a gravity compensator for the manipulator of a service robot. The manipulator of a service robot is operated with low velocity for the safety reason in most cases. In this situation gravitational torques generated by the mass of links are often much greater than dynamic torques for motion. A gravity compensator can counterbalance the gravitational torques, thereby enabling to utilize relatively low power motors. In this paper the gravity compensation for the roll-pitch rotation is considered which is often used for the shoulder joints of the manipulator of a service robot or humanoid robot. A gimbals is implemented and two 1-dof gravity compensators are equipped at the base. One compensates the gravitational torque at the roll joint and another provides the compensational torque for the gimbals. Various analyses showed that the proposed compensator can counterbalance the gravitational torques of 87% at the pitch joint and 50% at the roll joint. It is verified from dynamic simulations that the proposed compensator effectively counterbalances the gravitational torques.

Roll/yaw controller design using double gimbaled momentum wheel (더블김벌 모멘텀휠을 이용한 롤/요 제어기 설계)

  • 박영웅;방효충
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1099-1102
    • /
    • 1996
  • In this paper, roll/yaw attitude control of spacecraft using a double gimbaled wheel is discussed with two feedback controllers designed. One is a PD controller with no phase difference between roll and yaw control input. The other is a PD controller with a phase lag compensator about the yaw control input. The phase lag compensator is designed as a first order system and a lag parameter is designed for the yaw angle control. There are two case simulations for each controller ; constant disturbance torques and initial errors of nutation at motion. We obtain the results through simulations that steady-state error and rising time of yaw angle are determined by the compensator. Simulation parameters used in this study are the values of KOREASAT F1.

  • PDF

Dynamics of Register error on Compensator Roll type Converting Machines (보상롤 타입 컨버팅 머신의 레지스터 에러 동특성 해석)

  • Kim J.I.;Kang H.K.;Shin K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.325-326
    • /
    • 2006
  • Recently, it is concentrated on productivity improvement in high speed operation by converting industries. Register error is becoming the one of the most issued problem. Moreover register control is the key to product flexible displays through roll-to-roll systems. This paper presents a derivation of register error modeling. And the dynamics of register error is simulated under various conditions. Register error is affected by both roll velocity and tension between the front and back span. And dynamics of register error is to be an interaction in succeeding spans.

  • PDF

Attitude Controller Design for a Bias Momentum Satellite with Double Gimbal (더블김벌을 장착한 바이어스 모멘텀 위성의 자세제어기 설계)

  • Park, Young-Woong;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.34-42
    • /
    • 2004
  • In this paper, a double gimbal is used for roll/yaw attitude control of spacecraft and two feedback controllers are designed. One is a PD controller of no phase difference between roll and yaw control input. The other is a PD controller with a phase lag compensator about the yaw control input. The phase lag compensator is designed a first order system and a lag parameter is designed for the control of yaw angle. There are two case simulations for each of controllers; constant disturbance torques and initial errors of nutation. We obtain the results through simulations that a steady-state error and a rising time of yaw angle are developed by the compensator. In this paper, simulation parameters use the values of KOREASAT 1.

A Study on Decoupling Methods in Cold Rolling Mill (냉연시스뎀의 비간섭화 기법에 관한 연구)

  • 이관호;심재훈;권욱현;최승갑;박철재
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.220-220
    • /
    • 2000
  • In this paper, some non-interaction problems in tandem cold rolling mill are considered, which are required to control effectively a thickness of the cold .oiled strip. First, Interstand non-interactive compensate. (Interstand NIC) is designed for decoupling the interaction between stands. Next, a L2 optimization based pre-compensator is designed for decoupling the interaction between roll gap and strip tension in the stand. Finally, the effectness of the proposed decoupling methods is demonstrated via simulations.

  • PDF

Thickness Control of Cold-Rolling Mills with Roll Eccentricity (롤편심을 포함한 냉간 압연시스템의 두께제어)

  • 김승수;김종식;황이철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.248-254
    • /
    • 1996
  • A disturbance rejection controller using eccentricity filtering and LQ control techniques is proposed to alleviate significantly the effect of roll eccentricity in multivariable cold-rolling processes. Fundamental problems such as process time delay inherent in exit thickness measurement and non-stationary characteristics of roll eccentricity signals can be overcome by the proposed control method. The filtered instantaneous estimate of roll eccentricity may be exploited to improve instantaneous estimate of the exit thickness variation based on roll force and roll gap mearsurements, and a feedforward compensator is augmented as a reference for a gaugemeter thickness estimator. And, LQ feedback controller is combined with eccentricity filter for the attenuation of the exit thickness variation due to the entry thickness variation. The simulation results show that eccentricity components have been significantly eliminated and simultaneously other distrubances also have been attenuated.

  • PDF

Multivariable Control of Cold-Rolling Mills with Roll Eccentricity (롤편심을 포함한 냉간압연 시스템의 다변수 제어)

  • Kim, Jong-Sik;Kim, Seung-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.502-510
    • /
    • 1997
  • A disturbance rejection controller using eccentricity filtering and LQ control techniques is proposed to alleviate the effecto of major roll eccentricity in multivariable cold-rolling processes. Fundamental problems in multivariable cold-rolling processes such as process time delay inherent in exit thickness measurement and non-stationary characteristics of roll eccentricity signals can be overcome by the proposed control method. The filtered instantaneous estimate of roll eccentricity may be exploited to improve instantaneous estimate of the exit thickness variation based on roll force and roll gap measurements, and a feedforward compensator is augmented as a reference for a gaugemeter thickness estimator. LQ feedback controller is combined with eccentricity filter for the attenuation of the exit thickness variation due to the entry thickness variation. The simulation results show that the roll eccentricity disturbance is significantly eliminated and other disturbances also are attenuated.

Design of a Fuzzy Compensator for Balancing Control of a One-wheel Robot

  • Lee, Sangdeok;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.188-196
    • /
    • 2016
  • For the balancing control of a one-wheel mobile robot, CMG (Control Moment Gyro) can be used as a gyroscopic actuator. Balancing control has to be done in the roll angle direction by an induced gyroscopic motion. Since the dedicated CMG cannot produce the rolling motion of the body directly, the yawing motion with the help of the frictional reaction can be used. The dynamic uncertainties including the chattering of the control input, disturbances, and vibration during the flipping control of the high rotating flywheel, however, cause ill effect on the balancing performance and even lead to the instability of the system. Fuzzy compensation is introduced as an auxiliary control method to prevent the robot from the failure due to leaning aside of the flywheel. Simulation studies are conducted to see the feasibility of the proposed control method. In addition, experimental studies are conducted for the verification of the proposed control.