• 제목/요약/키워드: Compensation Controller

검색결과 750건 처리시간 0.024초

이중 변환 UPS의 병렬 운전 시 외란 저감 성능 향상을 위한 정지 좌표계 상의 전향 보상 기법 (Feed-Forward Compensation Technique in Stationary Reference Frame for the Enhanced Disturbance Rejection Performance in Parallel Operation of Double-Conversion UPSs)

  • 류효준;윤영두;모재성;최승철;우태겸
    • 전력전자학회논문지
    • /
    • 제27권5호
    • /
    • pp.367-375
    • /
    • 2022
  • Generally, a proportional-resonant controller is used to eliminate steady-state errors during the voltage-current control of a double-conversion uninterruptible power supply (UPS) in a stationary reference frame. Additionally, the feed-forward control compensating for the load current, which can be considered a disturbance of the voltage controller, can be used to improve the disturbance rejection performance. However, during the parallel operation of UPSs, circulating current can occur between UPS modules when performing both feed-forward control and droop control because feed-forward control reduces the circulating current impedance. This study proposes a feed-forward compensation technique that considers the impedance of circulating current. An additional feed-forward compensation technique is developed to enhance the disturbance rejection performance. The validity of the proposed feed-forward compensation technique is verified by the experiment results of the parallel operation of a 500 W double-conversion UPS module.

전류오차 궤환을 이용한 유도전동기 회전자 시정수 보상 (Compensation of the rotor time constant of induction motor using current error feedback)

  • 김승민;이무영;권우현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.195-198
    • /
    • 1997
  • This paper proposes the effective compensation method of the rotor time constant of induction motor. An indirect vector control method is highly dependent on the motor parameters. To solve the problem of performance degradation due to parameter variation in an indirect vector control of induction motor, we compensate the rotor time constant by current error feedback. The proposed method is a simple on-line rotor time constant compensation method using the information from terminal voltages and currents. As the current error, difference between current command and estimated current, approaches to zero, the value of rotor time constant in an indirect vector controller follows the real value of induction motor. This scheme is valid transient region as well as steady state region regardless of low or high speed. This method is verified by computer simulation. For this, we constructed the simulation model of induction motor, indirect vector controller and current regulated PWM (CRPWM) voltage source inverter (VSI) using SIMULINK in MATLAB.

  • PDF

퍼지제어기에 의한 온도보상효과를 고려한 태양광 발전 시스템의 MPPT제어 특성 (The Characteristic of MPPT Control for Photovoltaic System by Temperature Compensation Effect using Fuzzy Controller)

  • 강병복;차인수;유권종;정명웅;송진수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.238-241
    • /
    • 1995
  • In this paper, a new Maximum Power Point Tractor (MPPT) using Fuzzy Controller is proposed to improve energy convention efficiency. Temperature compensation effect means the photovoltaic voltage is change in condition irradiation, temperature and etc. Fuzzy algorithm is applied to control Boost MPPT converter by Temperature compensation effect. Temperature compensation range is $-40\sim+100^{\circ}C$.

  • PDF

공구경 보정을 이용한 2차원 자유곡선의 가공 (Machining of 2D Parametric Spline Using Cutter Radius Compensation)

  • 신하용;정회민;곽영수
    • 산업공학
    • /
    • 제8권3호
    • /
    • pp.133-139
    • /
    • 1995
  • Free from curves and surfaces are frequently used in designing engineering products such as car, ship, airplane, and hosing of electronic households. In many aspect, it is very nice to use the cutter radius compensation function of CNC controller when contour machining a 2-dimensional curve. However, if the 2D curve is a parametric spline, it is not easy to apply the cutter radius compensation function of CNC controller to the NC data obtained from many commercial CAM system. This is mainly due to the error magnification effect when offsetting line segments with inevitable round-off error at their vertices. Proposed in this paper is an approach to contour machining a 2D parametric spline while using cutter radius compensation. Some implementation results are included.

  • PDF

전향보상을 이용한 BLDC 전동기의 속도제어에 관한 연구 (A Study on the Speed Control of BLDC Motor Using the Feedforward Compensation)

  • 박기홍;김태성;현동석
    • 전력전자학회논문지
    • /
    • 제9권3호
    • /
    • pp.253-259
    • /
    • 2004
  • 본 논문은 BLDC 전동기의 고성능 속도제어를 위하여 외란 초크 관측기를 기반으로 한 속도 제어 방법에 대하여 기술하였다. 강성이 낮은 로봇 팔이나 추적 응용의 경우 시스템의 안정성 측면에서 속도 제어기의 이득 값을 크게 할 수 없다. 따라서 외란 토크 관측기를 이용한 전향 보상 방법을 이용하였다. 본 방법으로 속도 제어기의 이득을 충분히 크게 할 수 없을 때 외란 토크에 대한 속도 응답 특성을 향상시킬 수 있다. 결과적으로, 고성능 분야의 응용을 위한 BLDC 전동기의 속도 제어가 가능하게 된다.

피드포워드 제어를 이용한 위상차 보정 속도리플 제어기의 설계 (Design of Velocity Ripple Controller using Phase Compensation Feedforward Control)

  • 태원형;김정한;심종엽;오정석;송준엽
    • 한국정밀공학회지
    • /
    • 제31권8호
    • /
    • pp.705-713
    • /
    • 2014
  • In this paper, we propose a novel velocity ripple controller using phase compensation feedforward control. Velocity ripples result in many kinds of performance degradations in manufacturing machines, especially such as ultra-precision roll lathes. The generation of velocity ripple in constant velocity control comes from various causes, such as electrical torque ripples, mechanical worn out, inconsistent mass center, etc. Conventional researches about ripple is mainly for reducing torque ripple in actuator level, which is only one of reasons for velocity ripples, so in this study, we focus on eliminating velocity ripples in upper level controller using phase compensation feedforward controller. The proposed algorithm is composed of several modules, such as ripple extractor, phase adjuster and phase follower etc. The suggested algorithm can be easily extended, and it shows a superior performance in the experiments of ultra-precision roll lathes.

Model Predictive Control for Shunt Active Power Filter in Synchronous Reference Frame

  • Al-Othman, A.K.;AlSharidah, M.E.;Ahmed, Nabil A.;Alajmi, Bader. N.
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.405-415
    • /
    • 2016
  • This paper presents a model predictive control for shunt active power filters in synchronous reference frame using space vector pulse-width modulation (SVPWM). The three phase load currents are transformed into synchronous rotating reference frame in order to reduce the order of the control system. The proposed current controller calculates reference current command for harmonic current components in synchronous frame. The fundamental load current components are transformed into dc components revealing only the harmonics. The predictive current controller will add robustness and fast compensation to generate commands to the SVPWM which minimizes switching frequency while maintaining fast harmonic compensation. By using the model predictive control, the optimal switching state to be applied to the next sampling time is selected. The filter current contains only the harmonic components, which are the reference compensating currents. In this method the supply current will be equal to the fundamental component of load current and a part of the current at fundamental frequency for losses of the inverter. Mathematical analysis and the feasibility of the suggested approach are verified through simulation results under steady state and transient conditions for non-linear load. The effectiveness of the proposed controller is confirmed through experimental validation.

마스터-슬레이브형 원격 조작기의 쌍방향 서보제어기 제작에 관한 연구 (A bilateral servo system design for master-slave manipulators)

  • 김기엽;박찬웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.524-527
    • /
    • 1988
  • Basic types of bilateral servo systems were described and practical consideration in the bilateral servo controller design was introduced. Power assistance to the operator is essential for high efficiency and accurate force reflection is necessary for dexterous manipulation. This paper shows a controller structure under development at KIMM which employs nonlinear friction compensation and memory based gravity compensation technique for efficiency and dexterity.

  • PDF

산업용 로봇 매니퓰레이터의 다변수 제어기 설계 (A Design on Multivariable Controller for Industrial Robot Manipulators)

  • 한상완;홍석교
    • 제어로봇시스템학회논문지
    • /
    • 제4권5호
    • /
    • pp.636-643
    • /
    • 1998
  • This paper is presents multivariable control scheme for industrial robot manipulators. The control scheme consists of two loops. The modeling error between linearized robot model and actual robot model is compensated in error compensation loop. The PID control loop is designed for pole assignment to stability of robot system and utilized for trajectory tracking. Alternatively computer simulation results are given for illustration purpose of suggested controller.

  • PDF

동적전압보상기를 위한 시간지연을 고려한 디지털 제어기 설계 (Design of A Digital Controller with Time Delay for Dynamic Voltage Restorers)

  • 김효성;이상준;설승기
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 추계학술대회 논문집
    • /
    • pp.36-40
    • /
    • 2003
  • On analyzing the power circuit of a DVR system, control limitations and control targets are presented for the voltage compensation in DVRs. The control delay in digital controllers increases the dimension of the system transfer function one degree higher which makes the control system more complicate and more unstable. Based on the power stage analysis, a novel controller for the compensation voltages in DVRs is proposed by a feedforward control scheme. Proposed controller works well with the time delay in the digital control system. This paper also proposes a guide line to design the control gain, appropriate output filter parameters and inverter switching frequency for DVRs in digital controllers. Proposed theory is verified by an experimental DVR system with a typical digital controller.

  • PDF