• Title/Summary/Keyword: Compatible design

Search Result 518, Processing Time 0.025 seconds

Design of a Synthesizable ARM9 Compatible CPU (Synthesizable ARM9 호환 CPU의 설계)

  • 서보익;배영돈;박인철
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.200-203
    • /
    • 2000
  • In this paper, we describes the design of a CPU compatible with ARM9 processor. The CPU is fully synthesizable and described in Verilog-XL. Starting from the synthesizable ARM7 compatible CPU we developed earlier, we modified its pipeline to five stages. For this we first partition the behaviors of each instruction into five stage pipeline operations. Then we designed the controller and the datapath considering the forwarding or interlock schemes. Finally the compatibility of the designed CPU is verified by comparing the results of every instruction executed in test programs with those of the reference simulator developed for the ARM7 compatible CPU.

  • PDF

Optimal Design of an Exhaust System of a Vacuum-Compatible Air Bearing (진공용 공기베어링 배기시스템의 최적설계)

  • Khim, Gyung-Ho;Park, Chun-Hong;Lee, Hu-Sang;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.86-95
    • /
    • 2007
  • This paper presents the optimal design of an exhaust system of a vacuum-compatible air bearing using a genetic algorithm. To use the air bearings in vacuum conditions, the differential exhaust method is adopted to minimize the air leakage, which prevents air from leaking into a vacuum chamber by recovering air through several successive seal stages in advance. Therefore, the design of the differential exhaust system is very important because several design parameters such as the number of seals, diameter and length of an exhaust tube, pumping speed and ultimate pressure of a vacuum pump, seal length and gap(bearing clearance) influence on the air leakage, that is, chamber's degree of vacuum. In this paper, we used a genetic algorithm to optimize the design parameters of the exhaust system of a vacuum-compatible air bearing under the several constraint conditions. The results indicate that chamber's degree of vacuum after optimization improved dramatically compared to the initial design, and that the distribution of the spatial design parameters, such as exhaust tube diameter and seal length, was well achieved, and that technical limit of the pumping speed was well determined.

Generation of Target PSD Function Compatible with Design Response Spectrum (설계응답스펙트럼에 부합하는 목표 PSD함수의 작성)

  • Lee, Sang-Hoon;Choi, Dong-Ho
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.637-644
    • /
    • 2006
  • Acceleration time history used in the seismic analysis of nuclear porter plant structure should envelop a target power spectral density (PSD) function in addition to design response spectrum. Current regulation guide defines the target PSD function only for the U.S. URC RG 1.60 Design Response Spectrum. This paper proposes a technical scheme to obtain the target PSD function compatible with generally defined design response spectrum. The scheme includes the methodology for design-spectrum compatible motion history in order to minimize the variation of the derived target PSD function. The PSD calculation procedure follows simple and practical methods allowed within regulation. Effectiveness of the proposed scheme is identified through an example problem. The design response spectrum In the example is based on U.S. NRC RG 1.60 but amplifies the spectral acceleration amplitudes above 9Hz. The target PSD function with little variation can be constructed with the reduced time history ensemble.

  • PDF

Statistical evaluation of drift demands of rc frames using code-compatible real ground motion record sets

  • Kayhan, Ali Haydar;Demira, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.953-977
    • /
    • 2016
  • Modern performance-based design methods require ways to determine the factual behavior of structures subjected to earthquakes. Drift ratio demands are important measures of structural and/or nonstructural damage of the structures in performance-based design. In this study, global drift ratio and interstory drift ratio demands, obtained by nonlinear time history analysis of three generic RC frames using code-compatible ground motion record sets, are statistically evaluated. Several ground motion record sets compatible with elastic design spectra defined for the local soil classes in Turkish Earthquake Code are used for the analyses. Variation of the drift ratio demands obtained from ground motion records in the sets and difference between the mean of drift ratio demands calculated for ground motion sets are evaluated. The results of the study indicate that i) variation of maximum drift ratio demands in the sets were high; ii) different drift ratio demands are calculated using different ground motion record sets although they are compatible with the same design spectra; iii) the effect of variability due to random causes on the total variability of drift ratio demands is much larger than the effect of variability due to differences between the mean of ground motion record sets; iv) global and interstory drift ratio demands obtained for different ground motion record sets can be accepted as simply random samples of the same population at %95 confidence level. The results are valid for all the generic frames and local soil classes considered in this study.

Applications of the wavelet transform in the generation and analysis of spectrum-compatible records

  • Suarez, Luis E.;Montejo, Luis A.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.173-197
    • /
    • 2007
  • A wavelet-based procedure to generate artificial accelerograms compatible with a prescribed seismic design spectrum is described. A procedure to perform a baseline correction of the compatible accelerograms is also described. To examine how the frequency content of the modified records evolves with time, they are analyzed in the time and frequency using the wavelet transform. The changes in the strong motion duration and input energy spectrum are also investigated. An alternative way to match the design spectrum, termed the "two-band matching procedure", is proposed with the objective of preserving the non-stationary characteristics of the original record in the modified accelerogram.

비 격리교량의 연성도를 목표로 하는 지진격리교량의 응답수정계수

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.432-439
    • /
    • 2000
  • According as ground acceleration becomes to exceed gravity acceleration recently, design is impossible or economical efficiency is poor in existing seismic design method. So increase of seismic isolated bridges is currently in progress. However, because base isolation design method is developed in high seismic regions. it may not be compatible in Korea. Therefore, this research has objective to evaluate ductility of pier and response modification factor according to the ductility of pier in seismic isolated bridges and to adapt to seismic characteristics in Korea. For this purpose, nonlinear analysis is accomplished with so many time histories derived from spectral density function compatible with response spectrum described in the design code and base isolation system modeled linear system, bi-linear system, and friction system. Through application of the proposed method, we had result that it may be compatible that response modification factor for the seismic isolated bridges is smaller than half of that for the conventional bridges when natural period of structures exceeds proper level.

  • PDF

Simulation of Artificial Earthquake Wave Compatible with Seismic Design Spectrum and Its Response Characteristics (내진 설계용 스펙트럼에 적합한 인공지진파의 작성과 응답 특성)

  • Jun, Dae-Han;Kang, Pyeong-Doo;Kim, Jae-Ung
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.141-148
    • /
    • 2006
  • This study describes a generation of artificial earthquake wane compatible with seismic design spectrum. In seismic response analysis of building structures, the input ground accelerations have considerable effect on dynamic characteristics of structures. Therefore, it is important to properly select input ground motions for seismic response analysis. In this paper, the artificial earthquake wave are generated according to previously recorded earthquake waves in past earthquake events. The artificial wave have identical phase angles to the recorded earthquake wane, and their overall response spectra are compatible with seismic design spectrum with 5% of critical viscous damping. Each simulated earthquake wave has a identical phase angles to the original recorded ground acceleration, and match to design response spectra in the range of period from 0.02 to 10.0 seconds. It is concluded that the artificial earthquake waves simulated in this paper ate applicable as input ground motions for a seismic response analysis of building structures.

  • PDF

Conversion of Recorded Ground Motion to Virtual Ground Motion Compatible to Design Response Spectra (계측 기록의 설계스펙트럼 부합 가상 지진 변환 방법)

  • Ji, Hae Yeon;Choi, Da Seul;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.33-42
    • /
    • 2021
  • The design response spectrum presented in the seismic design standard reflects the characteristics of the tectonic environment at a site. However, since the design response spectrum does not represent the ground motion with a specific earthquake magnitude or distance, input ground motions for response history analysis need to be selected reasonably. It is appropriate to use observed ground motions recorded in Korea for the seismic design. However, recently recorded ground motions in the Gyeongju (2016) or Pohang (2017) earthquakes are not compatible with the design response spectrum. Therefore, it is necessary to convert the recorded ground motion in Korea to a model similar to the design response spectrum. In this study, several approaches to adjust the spectral acceleration level at each period range were tested. These are the intrinsic and scattering attenuation considering the earthquake environment, magnitude, distance change by the green function method, and a rupture propagation direction's directivity effect. Using these variables, the amplification ratio for the representative natural period was regressed. Finally, the optimum condition compatible with the design response spectrum was suggested, and the validation was performed by converting the recorded ground motion.

Generation of Artificial Earthquake Ground Motions using Nonstationary Random Process-Modification of Power Spectrum Compatible with Design Response Spectrum- (Nonstationary Random Process를 이용한 인공지진파 발생 -설계응답스펙트럼에 의한 파워스펙트럼의 조정-)

  • 김승훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.61-68
    • /
    • 1999
  • In the nonlinear dynamic structural analysis the given ground excitation as an input should be well defined. Because of the lack of recorded accelerograms in Korea it is required to generate an artificial earthquake by a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms. It is well known that earthquake motions are generally non-stationary with time-varying intensity and frequency content. Many researchers have proposed non-stationary random process models. Yeh and Wen (1990) proposed a non-stationary modulation function and a power spectral density function to describe such non-stationary characteristics. Satio and Wen(1994) proposed a non-stationary stochastic process model to generate earthquake ground motions which are compatible with design reponse spectrum at sites in Japan. this paper shows the process to modify power spectrum compatible with target design response spectrum for generating of nonstationary artificial earthquake ground motions. Target reponse spectrum is chosen by ATC14 to calibrate the response spectrum according to a give recurrence period.

  • PDF

Buyer and Supplier Collaboration Strategy for Development and Production in the Korean Auto Industry

  • Park, Tae-Hoon;Kim, Il-Gwang
    • Journal of Korea Trade
    • /
    • v.23 no.2
    • /
    • pp.14-33
    • /
    • 2019
  • Purpose - This paper aims to articulate determinants of inter-organizational cooperation based on to the extent to which inter-organizational tasks are related to product development and production processes. Design/Methodology - This research conducted OLS regression analysis based on the data acquired from questionnaire survey in Korean auto industry. Findings - Our analysis has verified that complementary and compatible resources, as well as physical and human asset specificities, positively affect inter-organizational product development cooperation. Conversely, in the production process, only complementary resources positively affect inter-organizational cooperation, whereas compatible resources and physical asset specificity have a negative influence. The changing characteristics of compatible resources (with IT innovations and AI), and physical asset specificity (influenced by a rising need to reduce production costs), cause inter-organizational cooperation in production to decrease. Originality/value - This research attempts to expound upon these determining factors of inter-organizational cooperation by considering both complementary-compatible resources and asset specificity in product development and production simultaneously. The reason why the impact of complementary-compatible resources and asset specificity on inter-organizational cooperation is critical in understanding the determinants of inter-organizational cooperation is that the attributes of complementary-compatible resources and asset specificity in production have changed drastically due to the continuing diffusion of IT innovations and AI (Artificial Intelligence).