• Title/Summary/Keyword: Compaction energy

Search Result 199, Processing Time 0.031 seconds

An Experimental Study on the Characteristics of Vibro-compaction of Crushed Stones (쇄석의 진동다짐 특성에 관한 실험적 고찰)

  • Jeong, Gil-Soo;Park, Byung-Soo;Hong, Young-Kil;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.89-94
    • /
    • 2004
  • This Study is results of experimental works to investigate the characteristics of vibro-compaction of crushed stones having coarse grain sizes. For testing material, crushed stone, sieved within very narrow ranges of grain size distribution, was used. Cyclic loading apparatus was used to apply cyclic loading to the specimen prepared in the mold. Tests were performed by changing the ratio of the maximum to the minimum stress, frequency and the magnitude of the maximum and the minimum stresses. Settlement of specimen due to cyclic loading was measured to analyze the compaction efficiency and sieve analysis test after cyclic loading test was also carried out to find the crushing rate of the specimen. As results of cyclic loading test, normalized settlement in terms of specimen height tends to be converged around loading cycle number of 1500. The magnitude of normalized settlement is in the range of 3.11 ~ 8.57%. The crushing rate is in the range of 4.46 ~ 8.78%. Normalize settlement and the crushing rate tend to increase with decreasing the ratio of the maximum to the minimum stresses and they tend to increase with increasing the frequency and the magnitude of the maximum and the minimum stresses for the given ratio. In conclusions, compaction rate of crushed stone is controlled by the dynamic stress (difference between the maximum and the minimum stresses) and the crushing rate is dominated by applied energy to the specimen.

  • PDF

Experimental Study on the Permeability of Decomposed Granite Soil (마사토의 차수성에 관한 실험적 연구)

  • 이형수
    • Water for future
    • /
    • v.7 no.2
    • /
    • pp.83-91
    • /
    • 1974
  • On the constructions of fill type dams, usually the constructions materials is desired to be obtained in vicinity ofthe dam sitc to justify economical feasilblity of the project. In the stability analysis of the dams, core parts takesa small fraction of the slip circle and main function of core is to decrease dam permeability. This paper shows results of various tests as physical properties, compactions (using single, double triple and four times of the tandard compaction energy) and the permeability tests. Single decomposed granite and mixed materials with clay soils were used in this test. And conclusions of these tests are as follows; 1. Criteira of weathering ratio should be caleulated by density measarment. 2. Permeability coefficient maiuly depends on th #200 sieve passing, and also passing soil quantities depends on the weathering condition of the soil. 3. It was established that low weathered decomposed granite can not be used for the core materials of the fill type dams. On the other hand, moderately weathered decomposed granite soil with particles could pass through #200 sieve in a quantity over 10%, could chieve permeability in a magnitude of $1{\times}10^{-5} cm/see$. 4. With the decomposed granite soil it is possible to perform three times larger compaction energy than the standard energy without any problems.

  • PDF

Planar Shock Wave Compaction of Oxidized Copper Nano Powders using High Speed Collision and Its Mechanical Properties (고속 충돌 시 발생하는 평면 충격파를 이용한 산화 나노 분말의 치밀화 및 기계적 특성 평가)

  • Ahn, Dong-Hyun;Kim, Wooyeol;Park, Lee Ju;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.39-43
    • /
    • 2014
  • Bulk nanostructured copper was fabricated by a shock compaction method using the planar shock wave generated by a single gas gun system. Nano sized powders, average diameter of 100 nm, were compacted into the capsule and target die, which were designed to eliminate the effect of undesired shock wave, and then impacted with an aluminum alloy target at 400 m/s. Microstructure and mechanical properties of the shock compact specimen were analyzed using an optical microscope (OM), scanning electron microscope (SEM), and micro indentation. Hardness results showed low values (approximately 45~80 Hv) similar or slightly higher than those of conventional coarse grained commercial purity copper. This result indicates the poor quality of bonding between particles. Images from OM and SEM also confirmed that no strong bonding was achieved between them due to the insufficient energy and surface oxygen layer of the powders.

The Engineering Characteristics of Weathered Sedimentary Rock Soils -ln Taegu and Kyungpook Areas- (퇴적암 풍화토의 공학적 특성 -대구.경북지역을 중심으로)

  • Kim, Yeong-Su;Lee, Sang-Bok;Jeong, Seong-Gwan
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.63-74
    • /
    • 1995
  • Much of Taegu and Kyungpook areas are composed of sedimentary rocks. This paper is concerned with the engineering characteristi os of weathered shale soils and mudstone soils. In this study, the engineering characteristics of weathered shale soils and mudstone soils are investigated by performing tests such as compaction, gradation, CBR permeability and crushability according to compaction energy and water content. The experiments were carried out to obtain the relationships of the ratio of surface area(Sw'/Sw) and the indez of crushing(IC) The results are found as follows : (1) Weathered shale soils are larger than weathered mudstone soils in maximun dry den sixty, but weathered shale soils are smaller than weathered mudstone soils in OMC. (2) Minimum permeability is found in OMC's 1~2% wet side, and the more compaction energy is high, the more the change's range of permeability becomes narrow. (3) There is linear correlation between the ratio of surface area and the indez of crushing. IC : 14.286sw'/Sw -8.429(r=0.9937) (4) Soaked CBR value becomes maximum in OMC's dry side, and it decreases as the water content increases. Whereas the more compaction energy is high the more unsoaked and soaked CBR values are high in OMC's dry side, unsoaked and soaked CBR values are opposed to that in OMC's wet side.

  • PDF

LandAnalysis of Effective Depth of Dynamic Replacement Method (동치환공법의 적정심도 결정에 관한 연구)

  • Kim, Sung-Hwan
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.305-314
    • /
    • 2018
  • Purpose: Dynamic Replacement Method currently lacks of sufficient research, implementation cases, and case histories, compared with other comparable methods, such as Dynamic Compaction Method. Method: In this study, for Dynamic Replacement Method, the effective improvement depth and improved strength were analyzed for silty clayey soils. Results: Testbed test was performed to verify the effectiveness of Dynamic Replacement Method followed by the main dynamic replacement implementation on real construction site. Conclusion: A The effects of changes of soft ground depth, dynamic replacements' diameter, depth, spacing, and applied energy on dynamic replacement efficiency in silty clays were assessed and the followings were found: Empirical coefficient for soil $n_R$ of Dynamic Replacement Method was within the range of 0.14~0.32 and its ${\sqrt{WH}}$ is recommended to be 1.25~2.5 times of those from Dynamic Compaction Method.

The Effect of Rootzone Mix and Compaction on Nitrogen Leaching in Kentucky bluegrass (토양의 종류와 답압이 켄터키블루그래스 토양층에서 질소용탈에 미치는 영향)

  • Lee, Sang-Kook;Frank, Kevin W.;Crum, James R.
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.1
    • /
    • pp.45-49
    • /
    • 2010
  • Research on nitrate-nitrogen ($NO_3-N$) leaching in turfgrass indicates that in most cases leaching poses minimal risk to the environment. Although there have been many studies investigating $NO_3-N$ leaching, there has been little research to investigate the effect of compaction level and rootzone mix on nitrogen (N) leaching. The research objective is to determine the effect of compaction level and rootzone mix on nitrogen leaching. The four rootzone mixes are 76.0:24.0, 80.8:19.2, 87.0:13.0 and 93.7:6.3 % (sand:soil). The four levels of compaction energies are 1.6, 3.0, 6.1, and 9.1 J $cm^{-2}$. Nitrogen was applied using urea at a rate of 147 kg $ha^{-1}$ split among three applications. Rootzone was packed into a polyvinylchloride pipe with a perforated bottom to facilitate drainage. Rootzone depth was 30 cm over a 5 cm gravel layer. Each column was sodded with Poa pratensis L. Hoagland solution designed for coolseason grasses, minus N, was used to ensure adequate nutrition in the rootzone. Turf grass quality and clipping yield were recorded from each tube at two-week intervals. The clippings were oven-dried at a temperature of $67^{\circ}C$ for 24 h and weighed. At the end of the study, root dry weight was determined by washing and oven-drying samples at $67^{\circ}C$ for 24 h. Leachate solution was collected weekly for analysis. More than 6.1 J $cm^{-2}$ of compaction energy increased possibilities of surface runoff. The compaction energy between 3.0 and 6.1 J $cm^{-2}$ produced more clipping dry weight and less N leaching than 9.1 J $cm^{-2}$.

Dynamic Shear Modulus of Compacted Clayey Soil (다짐점성토(粘性土)의 동적전단탄성계수(動的剪斷彈性係數))

  • Kang, Byung Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.109-117
    • /
    • 1983
  • Dynamic shear modulus of the compacted clayey soil was determined by the resonant column test to study the parametric effects of confining pressure, shear strain amplitude, molding water content, compaction energy, void ratio and the degree of saturation. The effect of each of these parameters on the dynamic shear modulus found to be significant and can be explained in terms of the changes in soil by compaction. Dynamic shear modulus of the compacted soil is increased significantly by compaction and compaction at the dry side of the optimum moisture content is much more effective. It is also found that the dynamic shear modulus showes a good correlation to the static shear strength of the compacted soil. Therefore the dynamic shear modulus of the compacted soil for a certain confining pressure may be obtained ea8i1y from the unconfined compression strength.

  • PDF

Water Holding Capacity and Hydraulic Conductivity According to Compaction and Saturation Degree for Perlite amended with Ground Coir (압밀과 포화수준에 따른 분쇄 Coir 혼합 펄라이트의 수분보유력과 수리전도도)

  • Kim, Gi-Rim;Woo, Hyun-Nyung;Kim, Hye-Jin;Park, Mi-Suk;Song, Jin-A;Song, Tae-Yong;Jang, Hyo-Ju;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.998-1003
    • /
    • 2011
  • This investigation was performed to determine the hydraulic conductivity coefficient and water holding capacity for a specified compaction forces which are the amount of mechanical energy applied to the porous granule (PG) volume. Most current specifications of minerals and perlite as growth media require to be compacted to a specified density, which in general is equivalent to a certain percentage of laboratory compaction. The water holding capacity of the saturated PG was very large at potential above -1 bar compared with perlite, but very little water remained below this value. The water holding capacity and hydraulic conductivity characteristics of graded PG amended with the ground coir less than 2 mm in diameter were also determined from pressure outflow data. The saturated hydraulic conductivity of the saturated and compacted PG was slightly lower by more than one tenth order of magnitude at equal matric potentials of perlite, but when expressed on the basis of equal water deficits, the conductivity of PG was higher at all but the smallest deficits than those of perlite.

Development of Environmentally Favorable Porous Concrete and Water Purification Characteristics by the Pavement System (친환경 도로포장용 투수콘크리트의 제조와 이를 이용한 도로포장시스템의 수질정화특성)

  • Hong, Chong-Hyun;Kim, Moon-Hoon;Yang, Churl-Shin
    • Journal of Environmental Science International
    • /
    • v.15 no.11
    • /
    • pp.1045-1052
    • /
    • 2006
  • Stormwater pollution is a major problem in urban areas. Pollutants like heavy metals and harmful chemicals in the runoff can endanger soil and ground water, when they are not sufficiently removed doting infiltration. Strength and infiltration capacity of porous concrete are the major problems that must be considered if permeable pavement system are demanded to be used in a drive way application. In this study, a series of compacted porous concrete mixtures and the system of pavement ate tested for the physical characteristics like compressive strength, flexural strength, unit weight, porosity, water permeability, and the purification capacity of contaminated water. The test results obtained indicate that the strength and infiltration capacity of porous concrete are strongly related to its matrix proportion and compaction energy and providing adequate filter layers underneath pavement surface course is one of the most important design considerations of permeable pavement system for pollution retention purpose.

Compressive Strength and Construction Characteristics of Environmentally Friendly Soil Concrete Pavement Using Red Mud Admixture (레드머드를 혼화재료로 사용한 친환경 흙포장의 압축강도 및 시공특성)

  • Hong, Chong-Hyun
    • Journal of Environmental Science International
    • /
    • v.21 no.9
    • /
    • pp.1059-1068
    • /
    • 2012
  • The purpose of this study was to develope the environmentally favorable method of roller compacted soil concrete pavement using industrial waste red mud. Red mud was the major solid waste produced in the process of alumina extraction from bauxite(Bayer process). For recycling purpose, red mud was treated and applied to use as concrete admixtures. To this end, laboratory test such as compressive strength of soil concrete, and field test such as construction characteristics of soil concrete pavement, had been conducted. From the study results, the compressive strength of soil concrete was strongly related to its matrix proportion and compaction energy. The optimum mix proportion was comprised of cement 300 $kg/m^3$, water 110 $kg/m^3$, fine aggregate 600 $kg/m^3$, course aggregate 1400 $kg/m^3$, red mud admixture 50 $kg/m^3$ and compaction energy above 2.86 $cm-kgf/m^3$. The $7^{th}$-day and $28^{th}$-day mean compressive strength of soil concrete were 43.8 MPa and 53.3 MPa each under the optimum condition. Pavement application of soil concrete using red mud admixture indicated that the proposed method was simple in case of construction and showed a good surface texture.