• Title/Summary/Keyword: Compaction effect

Search Result 402, Processing Time 0.024 seconds

Glass-alumina Composites Prepared by Melt-infiltration: Ⅰ. Effect of Alumina Particle Size (용융침투법으로 제조한 유리-알루미나 복합체: Ⅰ. 알루미나 입도 효과)

  • Lee, Deuk-Yong;Jang, Ju-Woong;Kim, Dae-Joon;Park, Il-Seok;Lee, Jun-Kwang;Lee, Myung-Hyun;Kim, Bae-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.799-805
    • /
    • 2001
  • Two commercial alumina powders having different particle size of $0.5{\mu}m$ and 3${\mu}$m were presintered at 1120$^{\circ}$C for 2h and then lanthanum aluminosilicate glass was infiltrated at 1100$^{\circ}$C for up to 4h to obtain the densified glass-alumina composites. The effect of alumina particle size on packing factor, microstructure, wetting, porosity and pore size, and mechanical properties of the composite was investigated. The optimum mechanical properties and compaction behavior were observed for the 3${\mu}$m alumina particle dispersed composite. The 3${\mu}$m alumina particle size and distribution for he preform were within 0.1 to 48${\mu}$m and bimodal and random orientation. The strength and the fracture toughness of the composite having 3${\mu}$m alumina particles were 519MPa and $4.5MPa{\cdot}m^{1/2}$, respectively.

  • PDF

INFLUENCE OF NICKEL-TITANIUM SPREADER ON THE SEALING ABILITY IN LATERAL CONDENSATION TECHNIQUE (측방가압충전시 Nickel-Titanium spreader의 사용유무가 근관충전효과에 마치는 영향)

  • Min, Kyung-San;Hong, Chan-Ui;Cho, Yong-Bum
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.381-389
    • /
    • 2000
  • Lateral condensation with gutta-percha and sealer has been shown to provide an excellent apical seal; however, the lateral condensation technique has demonstrated less favorable apical leakage results in curved canals when compared with straight canals. Placement of endodontic spreaders to within 1 to 2mm of the root canal working length has been advocated for optimum gutta-percha obturation. Due to their stiffness, stainless-steel(SS) spreaders will often fail to achieve this position in curved canals. Newly marketed nickel-titanium(NT) spreaders may offer an advantage in this regard due to the increased flexibility of these instruments. The purpose of this study was to evaluate the effect of NT finger spreader on the sealing ability in lateral condensation technique, compared with conventional SS finger spreader. Twenty four standardized resin models simulating curved canals(30 degree) were randomly placed into 2 groups and instrumented to a #30 master apical file size with Ni-Ti Profile .04 taper series using step down technique. Each groups was obturated with standardized gutta-percha cone by standard lateral condensation technique using SS finger spreader, NT finger spreader. And then, each model was sectioned horizontally with microtome at 1, 2, 3, 4, 5mm levels from the apex. At each of 5 levels, ratio of the area of gutta-percha was obtained by calculating the area of gutta-percha to the total area of the canal. The data collected were then analyzed statistically using a t test for independent samples. The results as follows ; 1. The total mean ratio of area of gutta-percha was 89.20${\pm}$7.00(%) for SS spreader group. 92.20${\pm}$5.17(%) for NT spreader group. There was statistically significant difference between each group(p<0.05). 2. At 3mm level, the mean ratio of area of gutta-percha was 88.32${\pm}$5.41(%) for SS spreader group, 95.25${\pm}$2.60(%) for NT spreader group. There was statistically significant difference between each group(p<0.05). At 1,2,4mm levels, NT spreader group showed greater mean ratio of area of gutta-percha than SS spreader group, too. But there was no statistically significant difference. 3. At 5mm level, the mean ratio of area of gutta-percha was 91.83${\pm}$3.42(%) for SS spreader group, 87.91${\pm}$3.68(%) for NT spreader group. There was statistically significant difference between each group(p<0.05). This study concluded that the NT spreader demonstrated somewhat favorable apical sealing effect than SS spreader in prepared curved canals. The clinical use of NT spreaders may enhance our ability to create better apical seals in curved canals, but further studies in this area will help clarify some of the remaining areas with which practitioners are concerned, such as compaction forces exerted by NT spreaders.

  • PDF

Geophysical Investigation of the change of geological environment of the Nanjido Landfill due to the Stabilization Process (난지도 매립장의 안정화에 따른 지질환경 변화 조사를 위한 지구물리 탐사)

  • Lee, Kie-Hwa;Kwon, Byung-Doo;Rim, Hyoung-Rae;Yang, Jun-Mo
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.113-126
    • /
    • 2000
  • We have conducted multiple geophysical surveys to investigate the geoenvironmental change of the Nanjido Landfill due to the stabilization process. Geophyscial surveys are comprized of gravity, magnetic, dipole-dipole electrical and SP methods. Due to the field conditions, surveys were conducted on the top surface of the landfill no.2 and southern border areas in front of landfills. The gravity anomalies obtained on the top surface of the landfill no.2 in 1999 show that the gradient of the anomaly on the central area is decreasing in comparison with that observed four years ago. The complexity of magnetic anomaly pattern it also decreasing. These facts suggest that the stabilization work of the Nanjido landfill makes some progress by compaction process due to repetitive subsidence and refilling. The dipole-dipole electrical resistivity and SP data obtained on the outside of the waterproof wall at the landfill no.1 were severely affected by unsatisfactory surface conditions. On the other hand, the dipole-dipole electrical resistivity profiles obtained on the inside and outside parts of the waterproof wall at the landfill no.2 show the blocking effect of leachate flow by the waterproof wall. Few SP anomalies are observed on the top and side surfaces of the landfill no.2, but SP anomalies obtained on the base area inside the waterproof wall strongly reflect the effect of leachate collecting wells.

  • PDF

Effect of Sea Water on Curing and Strength of Cemented Sand (해수가 고결모래의 양생 및 강도에 미치는 영향)

  • Park, Sung-Sik;Lee, Jun-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.6
    • /
    • pp.71-79
    • /
    • 2012
  • Sand compaction pile and stone column replacement methods have been commonly used for improving soft ground in the nearshore. Recently, DCM (Deep cement mixing) method, which can harden soft clays by mixing with cement, is more popularly used in such soft ground improvement. Sandy soils also exist in the seashore. Therefore, in this study, the effect of salinity in sea water and curing methods on the strength of cemented sand was evaluated in terms of unconfined compressive strength (UCS). The sand was mixed with five different cement ratios and distilled water or sea water, and then compacted into a cylindrical specimen. They were cured for 3 days under sea water for DCM construction condition and air cured for onshore curing condition. When a specimen was cured under sea water without confinement, it was easily collapsed due to initiation of cracks. When the cement ratio and curing method were the same, the UCS of the specimen without sea water was at maximum 3.5 times higher than those with sea water. The sea water used for mixing sand had more influence on strength reduction than the sea water used for curing. When the cement ratio was the same, the UCS of air-cured specimen was at average 2 times higher than those of water-cured specimen, regardless of water used.

Carbonation Behavior Evaluation of OPC Concrete Considering Effect of Aging and Loading Conditions (재령 및 하중효과를 고려한 OPC 콘크리트의 탄산화 거동 평가)

  • Hwang, Sang-Hyeon;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.122-129
    • /
    • 2019
  • The movement of deterioration agents such as a chloride ion, etc. in concrete varies with loading conditions and micro-structure developed by age effect. In this paper, the carbonation behavior by accelerated carbonation test is evaluated considering curing periods(28 days, 91 days, and 365 days) and loading conditions. Carbonation velocity coefficients are obtained referred to KS F 2584. In the control case without loading condition, carbonation velocity coefficient of 91 days decreases to 50.0 % level and that of 365 days decreases to 44.8 % level than that of 28 days curing condition. In 28 curing days, carbonation velocity coefficients changed level of 103.9 ~ 108.8 % in tensile region and 91.9~104.6 % in compressive region by loading conditions. Carbonation velocity coefficients in the 30 % and 60 % tensile loading case at 28 days decreases to 47.3 % and 52.5 % level compared to control case after 1 year. Furthermore, 45.8 % and 44.9 % level of carbonation velocity coefficients are evaluated for 30 % and 60 % compressive loading conditions compared to control case after 1 year. Carbonation velocity coefficient decreases in the 30 % compressive loading level due to effective pore compaction and it increases afterwards due to micro-cracking. In the tensile loading condition, unlike the behavior of compressive region, it linearly increases with increasing loading level.

Model Experiment for Evaluating Internal Erosion Resistance Around Embankment Box-culvert Using Biopolymer T reated Soil (바이오폴리머 혼합토를 활용한 제방 통문 주위 내부침식 저항성 평가를 위한 모형실험)

  • Kim, Minjin;Moon, Junho;Kim, Chanhee;Kim, Younguk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.65-70
    • /
    • 2021
  • River-side Embankment collapse involves various causes. The embankment collapse due to internal erosion around embedded structures reaches up to more than 10% in Korea. Many studies are being attempted to prevent from the collapse of the embankment rooted from overtopping and instability as well as internal erosion. One of them is the study on the application of biopolymers. The application of biopolymers to soils are divided into enhancing strength, vegetation and erosion resistance. This study investigated the effect of biopolymer treated soil on erosion resistance. The main goal of the study is to obtain basic data for real-scale experiments to verify the effectiveness of biopolymer treated soil embankment including a review of the collapse pattern in the model embankment with various test conditions. The optimized experimental conditions were selected by examining the erosion patterns according to each induction path with three compaction degree of the model embankment. As a result of the experiment, the internal erosion rate in the embankment to which the biopolymer treated soil was applied is greatly reduced, and it could be concluded that it might be applied to the actual embankment. However, in this study, the conclusion was drawn only within the scaled-down model embankment. In order to practically apply the biopolymer treated soil to the embankment, the study considering the scale effect would be needed.

Expression and Possible Role of Phospholipase C $\beta1$ and $\gamma1$ in Mouse Oocyte Maturation and Preimplantation Embryo Development (생쥐 난자의 성숙과 착상전 배발생에서의 Phospholipase C $\beta1$$\gamma1$의 발현 및 기능)

  • Lee, Young-Hyun;Geum, Dong-Ho;Shim, Chan-Seob;Suh, Phan-Gil;Kim, Kyung-Jin
    • Development and Reproduction
    • /
    • v.2 no.1
    • /
    • pp.9-20
    • /
    • 1998
  • It has been wel known that phospholipase C(PLC) plays an important role in the intracellular signaling in a variety of cell types. However, involvement of PLC in mouse oocyte maturation and preimplantation embryo development remains unknown. The present study examined the expression patterns of the mouse PLC \beta 1 and \gamma 1 during oocyte maturatio and preimplantation embryo development study examined the expression patterns of the mouse PLC \beta 1 and \gamma 1 during oocyte maturation and preimplantation embryo development by the competitive reverse transcription-polymerase chain reaction (RT-PCR method). PLC \gamma 1 mRNA (0.1 fg) was readily detected in germinal vesicle (GV)-stage oocyte and its level was reduced as meiotic resumption proceeded. PLC-\beta 1 mRNA (<0.1 fg) as detected at low level at GV-stage oocytes and scarcely detected at germinal vescle breakdown (GVBD)-stage oocytes. After fertilization, both PLC \beta 1 and \gamma 1 mRNA levels began to increase at morula-stage embryos (0.2 fg) and were more prominent in blastocyst-stage embryos(1 fg). to elucidate the possible involvement of PLC via protein kinase C(PKC) pathway during oocyte maturation and preimplantation embryo development , the effects of sphingosine (PKC inhibitor), sn-$diC_{8}$(PKC activator) anc U73122 (PLC ingibitor) were examined. Treatment of GV-stage oocytes with sphingosine (20 \mu M) facilitated the meiotic resuption by 10-20 over the control within 1 h as judged by GVBD, whereas U73122 failed to show any significant effect. U73122 (10 \mu M) effectively blocked the compaction of morula, while sn-$diC_{8}$(50 \mu M). In summary, the present study shows that the mouse PLC \beta 1 and \gamma 1 are expressed in a developmental stage-specific manner and PLC-PKC pathway may be involved in early preimplantation embryo development.

  • PDF

The Study on Improvement Methods for The Seismic Performance of Port Structures (항만 구조물의 내진성능 향상을 위한 배면 지반의 보강방안에 관한 연구)

  • Kim, Byung-Il;Hong, Kang-Han;Kim, Jin-Hae;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.151-165
    • /
    • 2019
  • In this study, the four types of improvement methods (increase self weight and reducing sliding force etc.) were proposed depending on install location with compaction grouting to improve seismic performance of existing port structure and optimal methods by analyzing the effects of improvement (stability, constructability and economy) by theoretical and numerical methods. From the dynamic time history analysis for artificial seismic waves, the results indicated that the horizontal displacement after improvement decreased compared to before improvement, however the displacement reduction effect among improvement methods was not significantly different. Slope stability based on the strength reduction method and the limit equilibrium analysis method, it is confirmed that the passive pile method is more safe than other methods. It is due to the shear strength at the failure surface is increased. In addition, the analysis of constructability and economy showed that the reduction of earth pressure method (type 02) and the passive pile method (type 03) are excellent. However, in the case of the passive pile method is concerned that there is a shortage of design cases and the efficiency can be reduced depend on various constraints such as ground conditions.

An Experimental Study on the Detection of Loosened Areas in a Ground cavity Using a Micro Penetration Test (초소형 관입시험기를 이용한 지반공동 주변지반의 이완영역탐지를 위한 실험적 연구)

  • Kim, Ho-Youn;Kim, Young-Ho;Park, Yoon-Suk;You, Seung-Kyong;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.299-306
    • /
    • 2019
  • In this study, a model experiment that simulates the behaviour of the ground composed of several compacted layer was intended to measure the loosened area in the event of a ground cavity through a LAD (Loosened area detector). It was confirmed that the size of the cone diameter was affected by the ground composed of fine grain + granulated soil layered through the model soil. In order to select the appropriate cone type, a scale effect experiment was conducted. From the test results, a micro-cone was chosen for the most suitable indoor model experiment. In the case of applying LAD in this study, the loosening condition of the ground was determined by the rapid change in penetration resistance caused by the difference in the boundary surface and relative density due to the compaction of the ground for indoor model testing. The range of loosened area occurring in the cavity was estimated through the penetration resistance characteristics on the ground, and the failure area was identified through the reduction rate of penetration resistance in the loosening area.

Mitotic-Specific Methylation in the HeLa Cell through Loss of DNMTs and DMAP1 from Chromatin

  • Kim, Kee-Pyo;Kim, Gun-Do;Kang, Yong-Kook;Lee, Dong-Seok;Koo, Deog-Bon;Lee, Hoon-Taek;Chung, Kil-Saeng;Lee, Kyung-Kwang;Han, Yong-Mahn
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.27-27
    • /
    • 2003
  • A diversified and concentrative approach of methylation player can be one of the most powerful studies in the understanding of global epigenetic modifications. Previous studies have suggested that DNA methylation contributes to transcriptional silencing through the several DNA methylation-mediated repression systems by hypermethylation, including methyltransferases (DNMTs), DNA methyltransferase association protein 1 (DMAPl), methyl-CpG binding domain (MBD), and histone deacetylases (HDACs). Assembly of these regulatory protein complexes act sequentially, reciprocally, and interdependently on the newly composed DNA strand through S phase. Therefore, these protein complexes have a role in coupling DNA replication to the designed turn-off system in genome. In this study, we attempted to address the role of DNA methylation by the functional analysis of the methyltransferase molecule, we described the involvement of DMAP1 and DNMTs in cell divistion and the effect of their loss. We also described distinct patterns that DMAP1 and DNMTs are spatially reorganized and displaced from condensing chromosomes as cells progress through mitosis in HeLa cell, COS7, and HIH3T3 cell cycle progressions. DNMT1, DNMT3b, and DMAP1 do not stably contact the genetic material during chromosome compaction and repressive expression. These finding show that the loss of activities of DNMTs and DMAP1 occure stage specifically during the cell cycle, may contribute to the integral balance of global DNA methylation. This is consistent with previous studies resulted in decreased histone acetyltransferases and HDACs, and differs from studies resulted in increased histone methyltransferases. Our results suggest that DNA methylation by DNMTs and DMAP1 during mitosis acts to antagonize hypermethylation by which this mark is epigenetical mitotic-specific methylation.

  • PDF