• Title/Summary/Keyword: Compaction condition

Search Result 186, Processing Time 0.03 seconds

The study on the Crushability of Weathered Cranite Soils (화강암질 풍화토의 파쇄성에 관한 연구)

  • 도덕현;강우묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.2
    • /
    • pp.81-103
    • /
    • 1979
  • The weathered granite soil involves problems in its stability in soil structures depending upon the reduction of soil strength due to the water absorption, crushability, and content of colored mineral and feldspar. As an attemt to solve the problems associated with soil stability, the crushability of weathered granite soil was investigated by conducting tests such as compaction test, CBR test, unconfined compression test, direct shear test, triaxial compression test, and permeability test on the five soil samples different in weathering and mineral compositions. The experimental results are summarized as follows: The ratio of increasing dry density in the weathered granite soil was high as the compaction energy was low, while it was low as the compaction energy was increased. The unconfined compressive strength. and CBR value were highest in the dry side rather than in the soil with the optimum moisture content, when the soil was compacted by adjusting water content. However, the unconfined compressive strength of smples, which were compacted and oven dried, were highest in the wet side rather than in soil with the optimum moisture content. As the soil becomes coarse grain, the ratio of specific surface area increased due to increased crushability, and the increasing ratio of the specific surface area decreased as the compaction energy was increased. The highest ratio of grain crushability was attained in the wet side rather than in the soil with the optimum moisture content. Such tendency was transforming to the dry side as the compaction energy was increased. The effect of water on the grain crushability of soil was high in the coarse grained soil. The specific surface area of WK soil sample, when compacted under the condition of air dried and under the optimum moisture content, was constant regardless of the compaction energy. When the weathered granite soil and river sand with the same grain size were compacted with low compaction energy, the weathered granite soil with crushability had higher dry density than river sand. However, when the compaction energy reached to certain point over limitation, the river sand had higher dry density than the weathered granite soil. The coefficient of permeability was lowest in the wet side rather than in the optimum moisture content, when the soil was compacted by adjusting soil water content. The reduction of permeability of soil due to the compaction was more apparent in the weathered granite soil than in the river sand. The highly significant correlation coefficient was obtained between the amount of particle breakage and dry density of the compacted soil.

  • PDF

Assessment of Soil Compaction Related to the Bulk Density with Land use Types on Arable Land

  • Cho, Hee-Rae;Jung, Kang-Ho;Zhang, Yong-Seon;Han, Kyung-Hwa;Roh, Ahn-Sung;Cho, Kwang-Rae;Lim, Soo-Jeong;Choi, Seung-Chul;Lee, Jin-Il;Yun, Yeo-Uk;Ahn, Byoung-Gu;Kim, Byeong-Ho;Park, Jun-Hong;Kim, Chan-Yong;Park, Sang-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.333-342
    • /
    • 2013
  • Soil compaction is affected by soil texture, organic matter (OM), strength (ST) and soil moisture, which is difficult to understand the degree and effects of related factors. The purpose of the study is to assess the impact of them on the compaction with bulk density (BD). The analysis was conducted with data collected from national-wide monitoring sites including 105 upland soils, 246 orchard soils, and 408 paddy soils between 2009 and 2012. The distributions of soil physical properties were measured. The correlation and multi linear regression analysis were performed between soil physical properties using SAS. The regression equation of BD(y) includes ST, gravitational water contents (GWC), and OM as variables commonly, having additional factors, clay content and sand content in paddy soil and upland soil for only subsoil (p<0.001). Our results show that the BD could be explained about 40~50% by various physical properties. The regression was mainly determined by ST in orchard and upland soil and by the GWC in paddy soil. To mitigate soil compaction, it is important to maintain the proper level of OM in upland soil and to consider the moisture condition with soil texture in paddy soil when making work plan. Furthermore, it would be recommended the management criteria classified by soil texture for the paddy soils.

A study of compaction ratio and permeability of soil with different water content (축제용흙의 함수비 변화에 의한 다짐율 및 수용계수 변화에 관한 연구)

  • 윤충섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.4
    • /
    • pp.2456-2470
    • /
    • 1971
  • Compaction of soil is very important for construction of soil structures such as highway fills, embankment of reservoir and seadike. With increasing compaction effort, the strength of soil, interor friction and Cohesion increas greatly while the reduction of permerbilityis evident. Factors which may influence compaction effort are moisture content, grain size, grain distribution and other physical properties as well as the variable method of compaction. The moisture content among these parameter is the most important thing. For making the maximum density to a given soil, the comparable optimum water content is required. If there is a slight change in water content when compared with optimum water content, the compaction ratio will decrease and the corresponding mechanical properties will change evidently. The results in this study of soil compaction with different water content are summarized as follows. 1) The maximum dry density increased and corresponding optimum moisture content decreased with increasing of coarse grain size and the compaction curve is steeper than increasing of fine grain size. 2) The maximum dry density is decreased with increasing of the optimum water content and a relationship both parameter becomes rdam-max=2.232-0.02785 $W_0$ But this relstionship will be change to $r_d=ae^{-bw}$ when comparable water content changes. 3) In case of most soils, a dry condition is better than wet condition to give a compactive effort, but the latter condition is only preferable when the liquid limit of soil exceeds 50 percent. 4) The compaction ratio of cohesive soil is greeter than cohesionless soil even the amount of coarse grain sizes are same. 5) The relationship between the maximum dry density and porosity is as rdmax=2,186-0.872e, but it changes to $r_d=ae^{be}$ when water content vary from optimum water content. 6) The void ratio is increased with increasing of optimum water content as n=15.85+1.075 w, but therelation becames $n=ae^{bw}$ if there is a variation in water content. 7) The increament of permeabilty is high when the soil is a high plasticity or coarse. 8) The coefficient of permeability of soil compacted in wet condition is lower than the soil compacted in dry condition. 9) Cohesive soil has higher permeability than cohesionless soil even the amount of coarse particles are same. 10) In generall, the soil which has high optimum water content has lower coefficient of permeability than low optimum water content. 11) The coefficient of permeability has a certain relations with density, gradation and void ratio and it increase with increasing of saturation degree.

  • PDF

Uplift Bearing Capacity of Spiral Steel Peg for the Single Span Greenhouse (온실용 나선철항의 인발저항력 검토)

  • Lee, Bong Guk;Yun, Sung Wook;Choi, Man Kwon;Lee, Si Young;Moon, Sung Dong;Yu, Chan;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.109-115
    • /
    • 2014
  • This study examined the uplift bearing capacity of spiral steel pegs according to the degree of soil compaction and embedded depth in a small-scaled lab test. As a result, their uplift bearing capacity increased according to the degree of soil compaction and embedded depth. The uplift bearing capacity under the ground condition of 85% compaction rate especially recorded 48.9 kgf, 57.9 kgf, 86.2 kgf and 116.6 kgf at embedded depth of 25 cm, 30 cm, 35 cm and 40 cm, respectively, being considerably higher than under other ground conditions. There were huge differences in the uplift bearing capacity of spiral steel pegs according to the compaction conditions of ground. Their maximum uplift bearing capacity was 116.6 kgf under the ground condition of 85% compaction rate and at embedded depth of 40 cm, and it is very high considering the data of spiral steel pegs. It is thus estimated that wind damage can be effectively reduced by careful maintenance of ground condition surrounding spiral steel pegs. In addition, spiral steel pegs will be able to make a contribution to greenhouse structural stability if proper installation methods are provided including the number and interval according to the types of greenhouse as well as fixation of plastic film. The findings of the study indicate that the optimal effects of spiral steel pegs for greenhouse can be achieved at embedded depth of more than 35cm and compaction degree of more than 85%. The relative density of the model ground in the test was 67% at compaction rate of 85%.

Effects of the Compaction and Size of Bottom Ash Aggregate on Thermal Conductivity of Porous Concrete (가압다짐과 바텀애시 골재 크기 특성이 다공성 콘크리트의 열전도도에 미치는 영향)

  • Yang, In-Hwan;Jeong, Seung-Tae;Park, Ji-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.195-203
    • /
    • 2022
  • In this paper, the effects of the bottom ash aggregate sizes and compaction levels on the thermal conductivity of porous concrete were investigated. In this experimental study, bottom ash was used as aggregates after identifying the aggregate characteristics. SA mixtures included hybrid aggregates, and DA contained only one particle size. The water-binder ratio was fixed at 0.30, and the compaction levels were applied to the concrete specimens at 0.5, 1.5, and 3.0 MPa. Unit weight, total void ratio, and thermal conductivity were measured and analyzed. As the compaction level increased, the unit weight and thermal conductivity increased in the SA mixtures, but the total void ratio decreased. In addition, the thermal conductivity of the specimens under oven-dried condition were lower than that of the specimens under air-dried condition. The correlation between the unit weight, total porosity, and thermal conductivity of porous concrete was analyzed. The thermal conductivity-unit weight correlation was proportional, while the thermal conductivity-total void ratio correlation was inversely proportional.

Effect of Yield Strength and Morphology of Spray-dried $Al_2O_3/15v/o ZrO_2$ Granules on the Compaction Behaviour

  • Shin, Dong-Woo;Yoon, Dae-Hyun;Lim, Chang-Sung
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.13-17
    • /
    • 1997
  • The densification of $Al_2$O$_3$/15v/o ZrO$_2$ (Zirconia Toughened Alumina: ZTA) to the 99% of theoretical density was attempted by controlling the processing parameters affecting the each processing step i.e., milling, spray-drying, forming and pressureless sintering. The ZTA processed under the identical conditions showed a large variation in the green and sintered densities, and the mechanical properties. The deviation of 4-point bending strength was more than 100MPa for the ZTA with ~99% of theoretical density. Moreover, the relative green and sintered densities were deviated greatly from the average value. This low reproducibility could be caused by the variation of spray-dried granule properties. Thus, the effect of yield strength and morphology of spray-dried ZTA granule on the green and sintered densities and the mechanical properties needs to be studied in detail. The objective of this work is to fine out the optimum condition of compaction pressure and compaction method depending on the properties of spray-dried granules.

  • PDF

Study on the Soil Compaction (part II) The Influence of Passing Percentage of No. 200 Sieve on Soil Compaction (흙의 다짐에 관한 연구 (제2 보) -200번체 통과율이 다짐에 미치는 영향-)

  • 강문묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.1
    • /
    • pp.1854-1860
    • /
    • 1970
  • Results of this study on the influence of percent passing of No. 200 sieve on soil compaction are as follows; 1. The higher maximum dry density of soil is, the lower optimum moisture content is. Maximum dry density is highest value and optimum moisture content is the lowest value in twocases that percents of No. 200 sieve are 30% in soils of which percents retained on No. 10 sieve are 5% and 10% respectively. 2. Maximum dry density increases according as uniformity coefficient increase. Maximum dry density is the highest when uniformity coefficient is approximately 300 in soil of which maximum diameter is 4.76mm. 3. Maximum dry density has a tendency to become large according as value of Cu Caincrease. Correlation between maximum dry density and $Log_{10}$(CuCa) shows straight line. 4. Maximum dry density increases according as n increase and reaches the peak when n equal 0.35 in condition that the index of talbot formula n is less than 0.35 in soil of which maximum diameter is 4.76mm. 5. Maximum dry density has a tendency to increase according as value of Cg $(Cg=\frac{P_{50}^2}{P_{10}{\times}{P_{200}}$) decrease.

  • PDF

Application of sand compaction pile method of row replacement ratio as foundation of the dyke (호안기초로서 저치환율 모래다짐말뚝 공법의 적용)

  • Jin, Sung-Ki;Kim, Bum-Hyung;Kim, Jong-Seok;Im, Jong-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.472-485
    • /
    • 2008
  • In this study, sand compaction pile method was adopted to improve the soft ground under the permanent dyke, namely west sea dyke of Incheon New Port. The row replacement ratio 30% was applied to consider the ground condition, environmental side and the construction cost of the site. The stability and displacement analysis was carried out by respectively SLOPE/W and PLAXIS 2D program. Based on this analysis, it is found that the safety factor and displacement is within an allowable criteria. The model experiment was carried out using the acryl soil box with $400(H){\times}1200(L){\times}250(W)mm$ to show the displacement of the dyke and behavior of soft ground. Based on this experiment results, it is found that the settlement does not occur from 1 and 2 loading phases and horizontal displacement of 0.0075% occurs from 2 phases. It is also found that the differential settlement occurs 0.05mm corresponding respectively 0.02% and 0.03% of the dyke height(15cm).

  • PDF

A Development on the Non-Destructive Testing Equipment for the Compaction Control and the Evaluation of Pavements Properties (지반물성추정 및 다짐관리를 위한 비파괴시험장비의 개발)

  • 최준성;김인수;유지형;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.385-390
    • /
    • 2000
  • In this study, the Non-Destructive Testing Equipment was introduced for the compaction control and the evaluation of pavements properties and the developing process was showed. Falling Weight Deflectometer(FWD) is a system for performing non-destructive testing of pavement and the other foundation structures. The system develops forces from the acceleration caused by the arrest of a falling weight and these forces are transmitted onto the surface of a structure causing it to deflect much as it would due to the weight of a passing wheel load. The structure will bend downward and exhibit a deflection basin. FWD uses a set of velocity sensors to determine the amplitude and shape of the deflection basin. The deflection response, when related to the applied loading, can provide information about the strength and condition of the various elements of the test structure. In this study, a computer program was developed that can be used to evaluate pavement and foundation structures from the data produced by FWD. The Falling Weight Deflectometer, non-destructive testing equipment, is increasing used at the whole world.

  • PDF

Comparison of the Finite Element Analysis and Experimental Result for Green Body Density of Alumina Ceramics (알루미나 압축성형체의 성형밀도와 유한요소 시뮬레이션 결과의 비교)

  • Yook, Young-Jin;Im, Jong-In
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.235-239
    • /
    • 2007
  • For the pressure compaction process of the ceramic powder, the density distribution is very important for the uniform shrinkages at the sintered body. In this paper, we fabricated alumina green body using compaction process and simulated about same condition. Then comparison of simulation and experimental result confirmed that accuracy of simulation. On the average density of top and lower part was each $2.41g/cm^3,\;2.27g/cm^3$ and deviation at final step was calculated with 0.06 in simulation. Also, experiments show that total density of top and lower part was each $2.59g/cm^3,\;2.36g/cm^3$, and deviation was 0.09. Conclusion, that was not a difference to the simulation and experimental result. The application using the finite element simulation method is possible optimization of the compressing process, predict generated part of cracks and there is a possibility of getting result of more fast, more accurate then existing experience method.