• Title/Summary/Keyword: Compaction characteristics

Search Result 425, Processing Time 0.031 seconds

The Study on the Compaction Characteristics of Underground Structural Backfill with Reclaimed Soil (준설토를 이용한 지하구조물 뒷채움 다짐특성에 관한 연구)

  • 김영웅;박기순;손형호;김종국
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.357-364
    • /
    • 1999
  • The purpose of this study is to analysis the grain distribution and compaction characteristics of structural backfill with reclaimed soil. Five(5) reclaimed soil samples which passed #200 sieve have been used in the test. The study showed that the maximum dry density and the bearing value rate turned out to be becoming smaller when the more the quantity passed #200 sieve, the smaller the soil grain. The maximum dry density value calculated from the compaction md relative density test showed wet method > compaction method > dry method. The correlation coefficient between Rc and Dr based on the grain distribution and the compaction characteristics showed that the maximum dry density value by the wet method is little higher than the compaction method and dry method.

  • PDF

Evaluation of Compaction Properties of Subgrade Soil by Gyratory Compaction Curve (선회다짐곡선특성을 이용한 노상토의 다짐도 평가)

  • Lee, Kwan-Ho;Cha, Min-Kyung;Lim, Yu-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2009
  • Compacted soil are used in almost roadway construction with compaction of soil. The direct consequence of soil compaction is densification, which in turn results in higher strength, lower compressibility, and lower permeability. The standard and modified Proctor tests are the most common methods. Both of these tests utilize impact compaction, although impact compaction shows no resemblance to any type of field compaction and is ineffective for granular soils. It has been dramatic advances in field compaction equipment. Therefore, the Proctor tests no longer represent the maximum achievable field density. The main objectives of this research are a survey of current field compaction equipment, laboratory investigation of compaction characteristics, and field study of compaction characteristics. The findings from the laboratory and compaction program were used to establish preliminary guidelines for suitable laboratory compaction procedures.

Correlation Between Physical and Compaction Characteristics of Various Soils (다양한 지반의 물리적 특성과 다짐특성 상관성)

  • Park, Choonsik;Kim, Jonghwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.1
    • /
    • pp.23-29
    • /
    • 2017
  • This study, to provide quantitative data related to compaction characteristics, identifies the compaction characteristics of various types of soil samplers, in relation to their particle-size distribution and plasticity degree, and the compaction characteristics of artificially created granular materials, in relation to their A & D compaction. The results of the experiments show as follows. $r_{dmax}$ of clay is less than those of both sand and gravel approximately by 10%. O.M.C of clay has turned out to be greater than sand and gravel approximately by 20% and 30%, respectively. Changes in the compaction characteristics can be observed clearly around 30~60% of sand and 30~50% of passing No.200 sieve. It has also been shown that the compaction characteristics related to LL and PL are similar to each other in changes, and that the compaction characteristics become less clear with higher percent of fine grained soil. The compaction characteristics of the artificially created granular materials and field materials have appeared almost similar to each other. $r_{dmax}$ is less approximately by 30% and O.M.C greater approximately by 20% in A compaction than in D compaction. As $r_{dmax}$ and O.M.C become greater, its rate increases.

A Study on Graphite Powder Compaction Behaviors Using the Discrete Element Method (이산요소법을 이용한 Graphite 분말 압축 특성 연구)

  • Jeong, Jun Hyeok;Choi, Jinnil
    • Journal of Powder Materials
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Accurate and effective powder compaction analyses are performed for brittle materials such as graphite, utilized as a solid lubricant, by using the discrete element method (DEM). The reliability of the DEM analysis is confirmed by comparing the results of graphite powder compaction analyses using the DEM particle bonding contact model and particle non-bonding contact model with those from the powder compaction experiment under the same conditions. To improve the characteristics, the parameters influencing the compaction properties of the metal-graphite mixtures are explored. The compressibility increases as the size distribution of the graphite powder increases, where the shape of the graphite particles is uniform. The improved compaction characteristics of the metal-graphite (bonding model) mixtures are further verified by the stress transmission and compressive force distribution between the top and bottom punches. It is confirmed that the application of graphite (bonding model) powders resulted in improved stress transmission and compressive force distribution of 24% and 85%, respectively.

Compaction Characteristics of Zone-1 Material in Concrete Faced Rockfill Dam (콘크리트 표면 차수벽형 석괴댐의 Zone-1재료에 대한 다짐특성)

  • Yea, Geu-Guwen;Han, Sang-Hyun;Lee, Jae-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.2
    • /
    • pp.9-15
    • /
    • 2007
  • Bedding zone in CRFD (Concrete Faced Rockfill Dam) requires bearing capacity to support the concrete face slab uniformly. Also, shear strength which is a key factor in slope stability and impermeability which is to prevent a loss of soils in case of leakage of concrete slab face are needed. In this study, trial prototype construction for bedding zone in CRFD was performed to investigate the compaction characteristics of bedding zone according to the frequency of compaction, water contents and so on. As a results of series of field test, the compaction characteristics of bedding zone in CRFD was affected considerably by the depth of compaction layer and frequency of compaction.

  • PDF

Characteristic of Subgrade Soil using Gyratory Compactor (선회다짐기를 이용한 노상토의 다짐특성)

  • Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.571-577
    • /
    • 2018
  • A gyratory compactor was developed to reflect the field compaction roller, which is commonly used in road construction. Unlike the compaction of the proctor using a conventional impact load, the gyratory compactor simulated the field roller compaction characteristics using the compressive force by the roller weight and the shear force through the rotation of a roller. The purpose of this study was to evaluate the shear stress and density change characteristics during compaction, which are difficult to obtain in the existing compaction process of the proctor, and to utilize it as a basic data for road design. The compaction characteristics of sand and subgrade soils were also analyzed and evaluated using the gyratory compactor. The compaction characteristics obtained using the gyratory compaction are basically the number of gyrations, height of the specimen, compaction density, void ratio, degree of saturation, and shear stress. As the number of gyrations increased, the height of the specimen decreased, the compaction density increased, the void ratio decreased, the degree of saturation increased, and the shear stress tended to increase. The shear stress of the compacted specimens started at 200 kPa in the initial stage of compaction and increased to approximately 330 to 350 kPa at 50 gyrations. The compaction density, degree of saturation and shear stress tended to increase with increasing water content in the same specimens. Compaction using turning compaction has the advantage of measuring the physical properties required for road design, such as density and shear stress, so that more engineering road design will be possible if it is reflected in road design.

Study on compaction characteristics of mixed fill materials(rock and soil) in railway roadbed (철도노반 혼합(흙과 암)성토의 다짐특성에 관한 연구)

  • Kim, Dae-Sang;Park, Seong-Yong;Song, Jong-Woo;Kim, Soo-Il
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.505-510
    • /
    • 2007
  • Concrete track will be constructed in Gyungbu High Speed Railway II(GHSR II) stage construction site from Daegu to Busan. Concrete track is supported by substructure consisting of the original ground and embankment and does not allow the settlement of track because of its structural type. The embankment is composed of rock and soil mixture and settlement is feasible. So management of settlement of embankment is key point in successful construction of the concrete track. Compaction management of mixed fill materials is important in minimizing the settlement of embankment. In this study, in order to assess the compaction characteristics of mixed fill materials, large laboratory compaction tests were conducted. Mixed fill materials were obtained from two construction sites in GHSR II construction site. Modeled mixed fill materials having different rock type, fine content, maximum particle diameter, and moisture contents were prepared. From the test results, compaction characteristics of mixed fill materials were analysed.

  • PDF

Effect of Coarse Materials on Compaction of Soil (조립재가 흙의 다짐에 미치는 영향)

  • 윤충섭;김호일;김현태
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.84-95
    • /
    • 1991
  • The compaction ratio of the field dry density to the maximum dry density is generally adopted as the index of quality control for embankment of earthfill structures such as Earth Dam, Sea Dike, River Bank and Road. In case of coarse materials are included in the earth material, the compaction ratio will be varied in wide range since the dry density is influenced by quantity of coarse material in the soil. The treatment for the coarse material should be controlled carefully in testing. In this study, the compaction characteristics of the soil contained the coarse materials were researched and calibration of the suitability of field quality control methods were carried out. 28 Samples were made of clay(CL) and sandy soil (SM) mixed with gravel whose content were 0, 4, 6, 8, 10, 12, 15, 20, 25, 30, 35, 40, 45, and 60% in Weight. The compaction characteristics depending on the coarse material content were analysed through 4 types of compaction tests which are A-1, B-i, C-i and D-1. The adjusting coefficients for density and moisture content namely a and ${\beta}$ respectively were proposed in order to consider the effects depending on content of the coarse materials. The test methods to control reasonably and promptly the quality of earthfill were proposed after analysing the ranges of possible errors on the relative compaction ratio between laboratory compaction methods and field density testing methods.

  • PDF

Experimental Study on Compaction Effect of Hydraulic Fill Soils (실내실험을 통한 수중 매립토의 다짐효과 분석)

  • Lee, Haeng-Woo;Chang, Pyoung-Wuck;Chang, Woong-Hee;Bong, Tae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.301-310
    • /
    • 2006
  • A series of laboratory tests was carried out for analyzing compaction characteristics of hydraulic fill soils(or hydraulically filled soils). Hydraulic fill soils were settled down by the weight of soil particle itself in water and consolidated by the extraction of water from the soil structures. Water content and dry unit weight were observed as the depth of sedimentation and consolidation soil. It was found from the result that the optimum water content $(W_{cpt})$ of the maximum unit weight$(\gamma_{dmax})$ is higher than that of laboratory compaction test(KS F 2312 A method). It was due to difference in compaction energy and compaction effect between two methods. And the maximum dry unit of hydraulic fill soil is smaller than that of laboratory compaction test. Especially in terms of compaction effect, the maximum relative compaction degrees$(R_{cmax})$ of Seamangum dredged sand, river sand and mixed sand, half and half of dredged and river sands, were 85%, 91% and 86%, respectively. It means that the compaction effect can be $85\sim91%$ of the maximum unit weight in laboratory compaction test.

  • PDF

An Experimental Study on the Ground Improvement of Waste Landfill (쓰레기매립지반 개량에 관한 실험적 연구)

  • Chon, Yong-Back;Jeong, Young-Gab
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.4
    • /
    • pp.341-348
    • /
    • 2004
  • This study experimented dividing compaction load by dynamic compaction test and an oil pressure hammer compaction test for consolidation strength characteristics experimental feedback about soil change aspect of waste landfill ground and revelation of compaction effect as underground research about consolidation behavior of waste landfill ground by compaction load, foot weight and percussion number of times were adapted differently each other with uniformity drop head when dynamic compaction test, and hammer scale and percussion number of times were adapted differently also when oil pressure hammer compaction test.

  • PDF