• Title/Summary/Keyword: Community Energy System

Search Result 211, Processing Time 0.025 seconds

Study on the Performance of Fuel Cell Driven Compound Source Heat Pump System to a Large Community Building (대형 Community 건물의 연료전지 구동 복합열원 하이브리드 히트펌프 시스템 성능에 관한 해석적 연구)

  • Jeong, Dong-Hwa;Byun, Jae-Ki;Choi, Young-Don;Cho, Sung-Hwan
    • New & Renewable Energy
    • /
    • v.4 no.3
    • /
    • pp.23-35
    • /
    • 2008
  • In the present study, performances of fuel cell driven compound source hybrid heat pump system applied to a large community building are simulated. Among several renewable energy sources, ground, river, sea, and waste water sources are chosen as available alternative energies. The performance and energy cost are varied with the hybrid heat pump sources. The system design and operation process appropriate for the surrounding circumstance guarantee the high benefit of the heat pump system applied to a large community building. Th system is driven by fuel cell system instead of the late-night electricity due to the advantages of the low energy cost and waste heat with high temperature.

  • PDF

Development of the DB-Based Energy Demand Prediction System Urban Community Energy Planning (광역도시 에너지계획단계에서의 DB기반 에너지수요예측 시스템 개발)

  • Kong, Dong-Seok;Lee, Sang-Mun;Lee, Byung-Jeong;Huh, Jung-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.940-945
    • /
    • 2009
  • Energy planning for hybrid energy system is important to increase the flexibility in the urban community and national energy systems. Expected maximum loads, load profiles and yearly energy demands are important input parameters to plan for the technical and environmental optimal energy system for a planning area. The method for energy demand prediction has been based on artificial neural networks(ANN). The advantage of ANN with respect to the other method is their ability of modeling a multivariable problem given by the complex relationships between the variables. This method can produce 10% of errors hourly load profile from individual building to urban community. As the results of this paper, energy demand prediction system has been developed based on simulink.

  • PDF

A Study on the District Community Cooling System using LNG Cold Energy (LNG 냉열이용 지역집단 냉방시스템에 대한 연구)

  • Kim, Chung-Kyun;Kim, Seung-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.6
    • /
    • pp.27-30
    • /
    • 2010
  • This paper presents the system design process of district community cooling system using LNG cold energy. The newly developed LNG cooling system includes several heat exchangers, LNG storage tank, thermal mass storage tank, several cold energy storage tanks, gas air-conditioners, compressors, constant pressure regulators, cold energy and hot energy supply pipes. In addition, the gas air-conditioner system is installed to supply not sufficient cold energy due to low level of city gas consumptions during a summer period. This system design is very effective and safe to supply cold energy mass of fresh air by exchanging two thermal masses of an air and 200kcal/kg cold energy of LNG. The district community cooling system with LNG cold energy does not produce CO2 and freon gases in the air.

The Characteristic analysis of Community Energy System in Japan (소규모 지역냉난방시스템 도입 특성분석)

  • 박준택
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.45-51
    • /
    • 2002
  • CES(Community Energy System)란 구역형의 소규모 지역냉난방시스템으로 세계에서 일본이 가장 발달된바, 일본의 도입 실태분석이 향후 국내 CES 도입에 중요한 자료가 될 것으로 판단되므로 일본에서의 소규모 지역냉난방시스템 도입사례에 대한 조사분석한 내용을 소개하고자 한다. 일본에서의 지역열공급사업의 개념은 1개소 또는 수개소의 열공급플랜트로부터 복수의 건물에 지역배관을 통하여 냉수ㆍ증기ㆍ온수 등을 보내어 냉난방ㆍ급탕을 행하는 것이다.(중략)

  • PDF

Analytical Study on the Performance of Ground Source Compound Hybrid Heat Pump System for Large Community Building (대형 Community 건물의 지열원 복합 하이브리드 히트펌프 시스템 성능에 관한 해석적 연구)

  • Byun, Jae-Ki;Jeong, Dong-Hwa;Lee, Jong-Gil;Hong, Seong-Ho;Choi, Young-Don;Cho, Sung-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.634-637
    • /
    • 2008
  • Ground source heat pumps are clean, energy-efficient and environment-friendly systems cooling and heating. Although the initial cost of ground source heat pump system is higher than that of air source heat pump, it is now widely accepted as an economical system since the installation cost can be returned within an short period of time due to its high efficiency. In the present study, performances of ground source compound hybrid heat pump system applied to a large community building are simulated. The system design and operation process appropriate for the surrounding circumstance guarantee the high benefit of the heat pump system applied to a large community building. If among several renewable energy sources, ground, river, sea, waste water source are chosen as available alternative energies are combined, COP of the system can be increased largely and hybrid heat pump system can reduced the fuel cost.

  • PDF

Reliability of Distribution System Divided into Community Energy Systems (구역전기사업자로 분리된 배전계통의 신뢰도 평가)

  • Bae, In-Su;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.85-90
    • /
    • 2010
  • This paper presents a technique to evaluate the reliability of customers in Community Energy System(CES). Operators of the CES are responsible for a reliable energy supply to their customers. Due to the strategy of the priority on their customers, the restoration process of DGs should be reordered when system outage happens. The previous study has proposed the technique in the distribution system in which one operator owns all DGs. Case studies in Bus 2 of Roy Billinton Test System(RBTS) verify that the accuracy of the proposed technique is comparable to that of previous technique, and the distribution system divided into several CESs changes the reliability index of customers in the CESs.

A Study on Policy Alternatives for Major Changes in the Korea's Agricultural Energy System (우리나라 농업 에너지체계의 전환을 위한 정책대안 연구)

  • Jung, In-Whan;Ko, Soon-Chul
    • Journal of Agricultural Extension & Community Development
    • /
    • v.11 no.2
    • /
    • pp.251-265
    • /
    • 2004
  • The agricultural sector's economic structure in Korea is regarded to encounter major barriers on the way toward revitalizing its economic prosperity. Among many, the energy-related problem is one of prime nuclei embedded in the country's agricultural sector. The ought-to-come structural changes in the country's agricultural energy system hinge upon the central government's policy direction as well as efforts of local governments and local farming community members. The indirect aids via 'cross subsidy' of electricity tariff rate and 'tax-exempt price' of oil fuels are two notable causes of the unsustainable energy consumption pattern in the country's agricultural sector. As measures, demand-side management(DSM) and energy-efficiency promotions are regarded to be the most attractive methods for energy conservation and economic productivity as well. Development of renewable energy sources are also receiving a great deal of attention for the long-term alternatives to the country's existing oil-based agricultural production mode. This study examines the contributive potential of DSM approaches and renewables-based technologies. With the critical evaluation on the concurrent adversities of the country's agricultural energy system, various sources of renewable energy-solar power, wind power, biomass, etc.-are examined for the purpose of technological and economical viability. As sufficient potentials of renewable energy sources are being estimated, both the system production cost and the installation cost for the county's rural areas are expected to lower in the long term. DSM options are also evaluated to be fruitful even in the short term. Both the public and civil arenas must galvanise each side's effort in order to promote these policy options and community potentials.

  • PDF

Development of a Energy Demand Estimator for Community Energy Systems (건물 단지에 대한 에너지 수요 예측 데이터베이스 응용 프로그램 개발)

  • Chung, Mo;Park, Hwa-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.37-44
    • /
    • 2009
  • The field-surveyed and measured energy consumption data is processed to develop building energy demand models for heating, hot water, cooling, and electricity. The load models are systematically organized as a database and hourly loads for a span of year (8760 hours) are generated by the program. Rased on those models a Microsoft Access application program is developed to calculate energy demands for a Community Energy System (CES) composed of 17 types of buildings. User-friendly interfaces are provided to assist non-expert end users and necessary tools to link the calculation results to subsequent coagulations such as operation simulation or economic assessment.

The Optimal Operation for Community Energy System Using a Low-Carbon Paradigm with Phase-Type Particle Swarm Optimization

  • Kim, Sung-Yul;Bae, In-Su;Kim, Jin-O
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.530-537
    • /
    • 2010
  • By development of renewable energy and more efficient facilities in an increasingly deregulated electricity market, the operation cost of distributed generation (DG) is becoming more competitive. International environmental regulations of the leaking carbon become effective to reinforce global efforts for a low-carbon paradigm. Through increased DG, operators of DG are able to supply electric power to customers who are connected directly to DG as well as loads that are connected to entire network. In this situation, a community energy system (CES) with DGs is a new participant in the energy market. DG's purchase price from the market is different from the DG's sales price to the market due to transmission service charges and other costs. Therefore, CES who owns DGs has to control the produced electric power per hourly period in order to maximize profit. Considering the international environment regulations, CE will be an important element to decide the marginal cost of generators as well as the classified fuel unit cost and unit's efficiency. This paper introduces the optimal operation of CES's DG connected to the distribution network considering CE. The purpose of optimization is to maximize the profit of CES. A Particle Swarm Optimization (PSO) will be used to solve this complicated problem. The optimal operation of DG represented in this paper would guide CES and system operators in determining the decision making criteria.

Analytical Study on the Performance of Fuel Cell Driven Ground Source Heat Pump Heating and Cooling System of a Large Community Building (대형 Community 건물의 연료전지 구동 지열원 히트펌프 냉.난방 시스템 성능에 관한 해석적 연구)

  • Byun, Jae-Ki;Jeong, Dong-Hwa;Choi, Young-Dong;Cho, Sung-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.6
    • /
    • pp.355-366
    • /
    • 2009
  • In the present study, fuel cell driven ground source heat pump system is applied to a large community building and performance of the heat pump system is computationally analyzed. Conduction heat transfer between brine pipe and ground is analyzed by TEACH code to predict the performance of heat pump system. Predicted COP of the heat pump system and the energy cost were compared with variation of the location of the objective building the water saturation rate of soil and the driven powers of heat pump system. Significant reduction of energy cost can be accomplished by employing the fuel cell driven heat pump system in comparison with the late-night electricity driven system. It is due to the low electricity production cost of fuel cell system and the application of recovered waste heat generated during electricity production process to the heating of large community building.