• Title/Summary/Keyword: Communication Chip

Search Result 970, Processing Time 0.026 seconds

An Efficient Interpolation Hardware Architecture for HEVC Inter-Prediction Decoding

  • Jin, Xianzhe;Ryoo, Kwangki
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.2
    • /
    • pp.118-123
    • /
    • 2013
  • This paper proposes an efficient hardware architecture for high efficiency video coding (HEVC), which is the next generation video compression standard. It adopts several new coding techniques to reduce the bit rate by about 50% compared with the previous one. Unlike the previous H.264/AVC 6-tap interpolation filter, in HEVC, a one-dimensional seven-tap and eight-tap filter is adopted for luma interpolation, but it also increases the complexity and gate area in hardware implementation. In this paper, we propose a parallel architecture to boost the interpolation performance, achieving a luma $4{\times}4$ block interpolation in 2-4 cycles. The proposed architecture contains shared operations reducing the gate count increased due to the parallel architecture. This makes the area efficiency better than the previous design, in the best case, with the performance improved by about 75.15%. It is synthesized with the MagnaChip $0.18{\mu}m$ library and can reach the maximum frequency of 200 MHz.

A Performance-Oriented Intra-Prediction Hardware Design for H.264/AVC

  • Jin, Xianzhe;Ryoo, Kwangki
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.50-55
    • /
    • 2013
  • In this paper, we propose a parallel intra-operation unit and a memory architecture for improving the performance of intra-prediction, which utilizes spatial correlation in an image to predict the blocks and contains 17 prediction modes in total. The design is targeted for portable devices applying H.264/AVC decoders. For boosting the performance of the proposed design, we adopt a parallel intra-operation unit that can achieve the prediction of 16 neighboring pixels at the same time. In the best case, it can achieve the computation of one luma $16{\times}16$ block within 16 cycles. For one luma $4{\times}4$ block, a mere one cycle is needed to finish the process of computation. Compared with the previous designs, the average cycle reduction rate is 78.01%, and the gate count is slightly reduced. The design is synthesized with the MagnaChip $0.18{mu}m$ library and can run at 125 MHz.

A Study on the VCR Cryptographic System Design Adapted in Wire/Wireless Network Environments (유무선 네트워크 환경에 적합한 VCR 암호시스템 설계에 관한 연구)

  • Lee, Seon-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.65-72
    • /
    • 2009
  • This paper proposed VCR cryptographic algorithm that adapted in TCP/IP protocol architecture and wire/wireless communication network environments. we implemented by hardware chip level because proposed VCR cryptographic algorithm perform scalable & reconfigurable operations into the security system. Proposed VCR cryptographic algorithm strengthens security vulnerability of TCP/IP protocol and is very profitable real-time processing and encipherment of high-capacity data and multi-user communication because there is important purpose to keep security about many user as that have variable round numbers function in network environments.

Study on Bandwidth and Characteristic Impedance of CWP3DCS (Coplanar Waveguide Employing Periodic 3D Coupling Structures) for the Development of a Radio Communication FISoC (Fully-integrated System on Chip) Semiconductor Device (완전집적형 무선통신 SoC 반도체 소자 개발을 위한 주기적인 3차원 결합구조를 가지는 코프레너 선로에 대한 대역폭 및 임피던스 특성연구)

  • Yun, Young
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.179-190
    • /
    • 2022
  • In this study, we investigated the characteristic impedance and bandwidth of CPW3DCS (coplanar waveguide employing periodic 3D coupling structures), and examined its potential for the development of a marine radio communication FISoC (fully-integrated system on chip) semiconductor device. To extract bandwidth and characteristic impedance of the CPW3DC, we induced a measurement-based equation reflecting measured insertion loss, and compared the measured results of the propagation constant β and characteristic impedance with the measured ones. According to the results of the comparison, the calculated results show a good agreement with the measured ones. Concretely, the propagation constant β and characteristic impedance exhibited an maximum error of 3.9% and 6.4%, respectively. According to the results of this study, in a range of LT = 30 ~ 150 ㎛ for the length of periodic structures, the CPW3DC exhibited a passband characteristic of 121 GHz, and a very small dependency of characteristic impedance on frequency. We could realize a low impedance transmission line with a characteristic impedance lower than 20 Ω by using CPW3DCS with a line width of 20 ㎛, which was highly reduced, compared with a 3mm line width of conventional transmission line with the same impedance. The characteristic impedance was easily adjusted by changing LT. The above results indicate that the CPW3DC can be usefully used for the development of a wireless communication FISoC (fully-integrated system on chip) semiconductor device. This is the first report of a study on the bandwidth of the CPW3DC.

The Study on the Embedded Active Device for Ka-Band using the Component Embedding Process (부품 내장 공정을 이용한 5G용 내장형 능동소자에 관한 연구)

  • Jung, Jae-Woong;Park, Se-Hoon;Ryu, Jong-In
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.1-7
    • /
    • 2021
  • In this paper, by embedding a bare-die chip-type drive amplifier into the PCB composed of ABF and FR-4, it implements an embedded active device that can be applied in 28 GHz band modules. The ABF has a dielectric constant of 3.2 and a dielectric loss of 0.016. The FR-4 where the drive amplifier is embedded has a dielectric constant of 3.5 and a dielectric loss of 0.02. The proposed embedded module is processed into two structures, and S-parameter properties are confirmed with measurements. The two process structures are an embedding structure of face-up and an embedding structure of face-down. The fabricated module is measured on a designed test board using Taconic's TLY-5A(dielectric constant : 2.17, dielectric loss : 0.0002). The PCB which embedded into the face-down expected better gain performance due to shorter interconnection-line from the RF pad of the Bear-die chip to the pattern of formed layer. But it is verified that the ground at the bottom of the bear-die chip is grounded Through via, resulting in an oscillation. On the other hand, the face-up structure has a stable gain characteristic of more than 10 dB from 25 GHz to 30 GHz, with a gain of 12.32 dB at the center frequency of 28 GHz. The output characteristics of module embedded into the face-up structure are measured using signal generator and spectrum analyzer. When the input power (Pin) of the signal generator was applied from -10 dBm to 20 dBm, the gain compression point (P1dB) of the embedded module was 20.38 dB. Ultimately, the bare-die chip used in this paper was verified through measurement that the oscillation is improved according to the grounding methods when embedding in a PCB. Thus, the module embedded into the face-up structure will be able to be properly used for communication modules in millimeter wave bands.

A design and implementation of Face Detection hardware (얼굴 검출을 위한 SoC 하드웨어 구현 및 검증)

  • Lee, Su-Hyun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.43-54
    • /
    • 2007
  • This paper presents design and verification of a face detection hardware for real time application. Face detection algorithm detects rough face position based on already acquired feature parameter data. The hardware is composed of five main modules: Integral Image Calculator, Feature Coordinate Calculator, Feature Difference Calculator, Cascade Calculator, and Window Detection. It also includes on-chip Integral Image memory and Feature Parameter memory. The face detection hardware was verified by using S3C2440A CPU of Samsung Electronics, Virtex4LX100 FPGA of Xilinx, and a CCD Camera module. Our design uses 3,251 LUTs of Xilinx FPGA and takes about 1.96${\sim}$0.13 sec for face detection depending on sliding-window step size, when synthesized for Virtex4LX100 FPGA. When synthesized on Magnachip 0.25um ASIC library, it uses about 410,000 gates (Combinational area about 345,000 gates, Noncombinational area about 65,000 gates) and takes less than 0.5 sec for face realtime detection. This size and performance shows that it is adequate to use for embedded system applications. It has been fabricated as a real chip as a part of XF1201 chip and proven to work.

A 3-stage Wideband Q-band Monolithic Amplifier for WLAN

  • Kang, Dong-Min;Lee, Jin-Hee;Yoon, Hyung-Sup;Shim, Jae-Yeob;Lee, Kyung-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1054-1057
    • /
    • 2002
  • The design and fabrication of Q-band 3-stage monolithic microwave integrated circuit(MMIC) amplifier for WLAN are presented using 0.2$\square$ AIGaAs/lnGaAs/GaAs pseudomorphic high electron mobility transistor (PHEMT). In each stage of the MMIC, a negative feedback is used for both broadband and good stability. The measurement results are achieved as an input return loss under -4dB, an output return loss under -10dB, a gain of 14dB, and a PldB of 17dBm at Q-band(36~44GHz). These results closely match with design results. The chip size is 2.8${\times}$1.3mm$^2$. This MMIC amplifier will be used as the unit cell to develop millimeter-wave transmitters for use in wideband wireless LAN systems.

  • PDF

Design of V-Band Differential Low Noise Amplifier Using 65-nm CMOS (65-nm CMOS 공정을 이용한 V-Band 차동 저잡음 증폭기 설계)

  • Kim, Dong-Wook;Seo, Hyun-Woo;Kim, Jun-Seong;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.10
    • /
    • pp.832-835
    • /
    • 2017
  • In this paper, V-band differential low noise amplifier(LNA) using 65-nm CMOS process for high speed wireless data communication is presented. The LNA is composed of 3-stage common-source differential amplifiers with neutralization of feedback capacitances using MOS capacitors and impedance matching utilizing transformers. The fabricated LNA has a peak gain of 23 dB at 63 GHz and 3 dB bandwidth of 6 GHz. The chip area of LNA is $0.3mm^2$ and the LNA consumes 32 mW DC power from 1.2 V supply voltage.

Technology Development of Entry-Level MiC Smart Photovoltaic System based on SOC (SoC 기반 보급형 MiC 스마트 태양광발전시스템 기술개발)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.129-134
    • /
    • 2020
  • Moisture infiltration inside the solar cell module, filling of EVA sheet, melting of the frame seal, and deterioration of power generation performance in the module one year after installation are occurring. Whitening phenomenon, electrode corrosion phenomenon, and dielectric breakdown phenomenon are appearing in solar cell module installed in Korea before 5-7 years, leading to deterioration of power generation performance, and big problems for long-term reliability and long life technology are emerging. Therefore, in order to solve these problems, the development of a micro inverter (MiCrco Inverter Converter, MiC) including the function of securing the durability of the solar cell module and monitoring the aging progress and the solar cell based on the monitoring data from the MiC smart monitoring programs have been proposed to determine the aging of modules. In addition, in order to become a highly efficient solar smart monitoring system through systematic operation management through IT convergence with MiC that has enhanced monitoring function of solar cell module, SoC(System On Chip) in micro inverter is the environment for solar cell module. There is a demand for functions that can detect information in a complex manner and perform communication and control when necessary. Based on these requirements, this paper aims to develop SoC-based low-cost MiC smart photovoltaic system technology.

Design and Implementation of Adaptive Beam-forming System for Wi-Fi Systems (무선랜 시스템을 위한 적응형 빔포밍 시스템의 설계 및 구현)

  • Oh, Joohyeon;Gwag, Gyounghun;Oh, Youngseok;Cho, Sungmin;Oh, Hyukjun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2109-2116
    • /
    • 2014
  • This paper presents the implementation and design of the advanced WI-FI systems with beam-forming antenna that radiate their power to the direction of user equipment to improve the overall throughput, contrast to the general WI-FI systems equipped with omni-antenna. The system consists of patch array antenna, DSP, FPGA, and Qualcomm's commercial chip. The beam-forming system on the FPGA utilizes the packet information from Qualcomm's commercial chip to control the phase shifters and attenuators of the patch array antenna. The PCI express interface has been used to maximize the communication speed between DSP and FPGA. The directions of arrival of users are managed using the database, and each user is distinguished by the MAC address given from the packet information. When the system wants to transmit a packet to one user, it forms beams to the direction of arrival of the corresponding user stored in the database to maximize the throughput. Directions of arrival of users are estimated using the received preamble in the packet to make its SINR as high as possible. The proposed beam-forming system was implemented using an FPGA and Qualcommm's commercial chip together. The implemented system showed considerable throughput improvement over the existing general AP system with omni-directional antenna in the multi-user communication environment.