• 제목/요약/키워드: Common rail direct injection system

검색결과 49건 처리시간 0.024초

축압식 고압 연료분사펌프 시스템 특성 해석 (Characteristics of a High Pressure Accumulator Type Fuel Injection System)

  • 박석범;구자예
    • 대한기계학회논문집B
    • /
    • 제22권8호
    • /
    • pp.1101-1110
    • /
    • 1998
  • Computational investigation was conducted to examine the performance of a high pressure common-rail fuel injection system which is used to power a passenger car direct injection (Dl) diesel engine. The pipe flows were modeled by one dimensional wave equation and solved by implicit FDM Each volume of injector was considered as chambers with orifice nozzle in connections. These simulation results were compared with the experimental data of Ganser Hydromag. The comparison of needle life and rate of injection between simulation data and experimental data showed quite a good agreement Different shape of injection rate can be made by adjusting the size of inlet orifice and exit orifice in the piston chamber The pilot injection was accomplished by adjusting command signal.

피에조 인젝터 커먼레일 시스템을 이용한 함산소연료의 분무특성에 관한 연구 (An Investigation on a Spray Characteristics of Oxygenated Fuel with a Piezo Injector Common Rail System)

  • 이세준;양지웅;김상일;임옥택
    • 한국분무공학회지
    • /
    • 제17권4호
    • /
    • pp.171-177
    • /
    • 2012
  • To understand oxygenated fuel characteristics including spray penetration length and spray angle at a real engine ambient pressure condition, DME was injected into a high pressure chamber by a piezo injector common rail system. The piezo injector common rail system was able to apply steady injection pressure, rapid response, and accurate injection quantity. Injection and ambient pressure were varied to confirm a relation with spray form. Using a direct photographing technique, development process of DME spray was captured. DME injection quantity was enlarged linearly as increasing of the injection pressure. In the high pressure chamber, when the injection pressure was enlarged the penetration length and velocity were increased due to a big momentum of fuel particle at the same ambient pressure. When ambient pressure was increased, the DME spray penetration length and velocity were decreased since the high ambient density of nitrogen was acted as a resistance. Although the ambient pressure and injection pressure were varied, each case of spray angle was almost same since the spray angle had a connection of the injector nozzle geometry.

매연여과장치 재생을 위한 커먼레일 디젤엔진의 연소 최적화에 관한 연구 (A Study on the Combustion Optimization of a Common Rail Direct Injection Diesel Engine for Regeneration of the Diesel Particulate Filter)

  • 강중훈;김만영;윤금중
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.167-173
    • /
    • 2005
  • Thermal regeneration means burning-off and cleaning-up the particulate matters piled up in DPF(diesel particulate filter), and it requires both high temperature $(550\~600^{\circ}C)$ and appropriate concentration of oxygen at DPF entrance. However, it is not easy to satisfy such conditions because of the low temperature window of the HSDI(high speed direct injection) diesel engine(approximately $200\~350^{\circ}C$ at cycle). Therefore, this study is focused on the method to raise temperature using the trade-off relation between temperature, oxygen concentration, and the influence of many parameters of common rail injection system including post injection. After performing an optimal mapping of the common rail parameters for regeneration mode, the actual cleaning process during regeneration mode is investigated and evaluated the availability of the regeneration mode mapping through regenerating soot trapped in the DPF.

커먼레일 분사장치를 이용한 Dimethyl Ether와 디젤연료의 연소특성 (Combustion Characteristics of Dimethyl Ether (DME) and Diesel Fuel Using a Common-rail Fuel Injection System)

  • 최욱;이주광;배충식
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.30-37
    • /
    • 2004
  • The combustion and emission characteristics of a direct injection CI engine fuelled with DME(Dimethyl Ether) and diesel fuel were compared at idle engine speed(800 rpm) with various injection parameters. An optical single cylinder diesel engine equipped with a common-rail fuel injection system was constructed to investigate combustion processes of DME and diesel fuel. The combustion images were recorded with a high-speed video camera system. The results demonstrated that the DME-fuelled engine was superior to the conventional diesel engine in terms of engine performance and emissions. The optimal injection timing of DME was located around IDC(Top Dead Center), which was roughly same as that of diesel fuel. As the injection timing was advanced much earlier than TDC, NOx (Nitric Oxides) level increased considerably. NOx emission of DME was equal or a little higher than that for diesel fuel at the same injection pressure and timing because of higher evaporation characteristics of DME. Throughout all experimental conditions, DME did not produce any measurable smoke level.

커먼레일용 연료분사 인젝터의 설계변수에 대한 민감도 분석 (Sensitivity Analysis on Design Parameters of the Fuel Injector for CRDI Engines)

  • 장주섭;윤영환
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.107-114
    • /
    • 2009
  • A Common-Rail Direct Injection (CRDI) system for high speed diesel engines was developed to meet reductions of noise and vibration, emission regulations. High pressure in the common rail with electric control allows the fuel quantity and injection timing to be optimized and controlled throughout a wide range of engine velocity and load conditions. In this study, CRDI system analysis model which includes fuel and mechanical systems was developed using commercial software, AMESim in order to predict characteristics for various fuel injection components. The parameter sensitivity analysis such as throttle size, injection rate, plunger displacement, supply pressure of fuel injection for system design are carried out.

직접분사식 디젤기관의 연소 및 배기에 관한 연구 (A Study on Combustion and Exhaust Emission in Direct Injection Diesel Engine)

  • 김두범;김기복;김치원;한성현
    • 한국산업융합학회 논문집
    • /
    • 제20권2호
    • /
    • pp.105-113
    • /
    • 2017
  • Recently the direct injection diesel engine is the most efficient one available for road vehicles, so this fundamental advantage suggests the compression injection diesel engine are a wise choice for future development efforts. The compression ignition diesel engine, with its bigger compression ratios if compared to the SI engine, offers a higher thermodynamic efficiency, also additionally the diesel engine with its less pumping losses due to the throttled intake charge as in a SI engine has higher fuel economy. But the largest obstacle to the success of this engine is meeting emission standards for Nitric oxides and particulate matter while maintain fuel consumption advantage over currently available engines. Thus its use should be largely promoted, however, diesel engine emits more Nitric oxides and particulate matter than other competing one. There has been a trade-off between PM and NOx, so efforts to reduce NOx have increased PM and vice versa, but trap change this situation and better possibility emerge for treating NOx emission with engine related means, such as injection timing, equivalence ratio, charge composition, and engine speed. The common rail direct injection system is able to adjust the fuel injection timing in a compression ignition engine, so this electronically controlled injection system can reduce the formation of NOx gas without increase in soot. In this study it is designed and used the engine test bed which is installed with turbocharge and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and exhaust emission as operating parameters.

3중분사가 HSDI 디젤엔진의 성능과 배기에 미치는 영향 (The Effect of Triple Injection on Engine Performance and Emissions in a HSDI Diesel Engine)

  • 최욱;박철웅;국상훈;배충식
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.40-57
    • /
    • 2004
  • The effects of triple (pilot, main and after) injection on combustion and emission characteristics in a HSDI (High-Speed Direct Injection) diesel engine were investigated using a single-cylinder optical diesel engine equipped with a common-rail injection system. The pilot injection affected the spray and combustion evolution of the following main injection. It was found that the pilot injection reduced the ignition delay, which led to lowered NOx (Nitric Oxides) level, and increased IMEP (Indicated Mean Effective Pressure) due to slow combustion pace during an expansion stroke. The after-injection was shown to be effective in reducing PM (Particulate Matter) even when a small amount of fuel was added. The results suggest that a proper combination of individual injection strategy could bring about a good synergetic effect on engine performance and emission.

커먼 레일 시스템 고압 연료 분사용 스월 노즐 인젝터의 분사 특성에 관한 연구 (A Study on the Injection Characteristics of Swirl Nozzle Injector in Common-rail System for High Pressure Fuel Injection)

  • 신윤섭;이기수;김현철;곽상신;신석신;서현규
    • 한국자동차공학회논문집
    • /
    • 제21권4호
    • /
    • pp.89-95
    • /
    • 2013
  • In this work, the evaluation of swirl nozzle injector performance was conducted by investigating effective area ($A_{eff}$), injection mass ($m_{inj}$), injection rate ($Q_{inj}$), and injection delay ($t_{delay}$) under various test conditions. To achieve these, fuel injection analysis system which was composed of fuel supply system, injection system, and control system was installed. At the same time, the swirl nozzle that had 12 orifice hole with $120^{\circ}$ injection angle was used in this work. It was revealed that the difference of injection mass ($m_{inj}$) between base and swirl nozzle injector increased as the injection pressure ($P_{inj}$) and energizing duration ($t_{eng}$) decreased under the same test conditions. The maximum injection rate ($Q_{inj}$) of swirl nozzle injector was higher than base nozzle injector about 2~5%. The injection performance of swirl nozzle was better than base nozzle at low injection pressure ($P_{inj}$) and short energizing duration ($t_{eng}$) conditions.

스프링하중을 고려한 디젤차량용 오버플로우 밸브 성능평가 (Overflow Valve and Performance Evaluation System for Diesel Cars based on Spring Load)

  • 윤달환
    • 전기전자학회논문지
    • /
    • 제20권2호
    • /
    • pp.200-204
    • /
    • 2016
  • 본 연구에서는 유로형(EURO type) 클린 디젤 CRDI(common rail direct injection) 엔진용 오버플로우 밸브 성능 평가 시스템을 구현한다. 친환경 조건에 맞도록 정밀 기능을 구비한 오버플로우를 위해 스프링의 하중을 고려한 구현이 중요하다. 특히 정밀제어에 따른 디젤 차량의 성능평가는 연비 향상과 환경 규제 만족이 필연적이다. 이에 성능평가를 위한 평가 알고리즘의 기본 조건은 100cc 미만에서 3.0 bar, 150 cc 이상에서 3.3 bar, 250 cc이상에서 4.0 bar를 사용하여 시험한다.

Swirl Groove Piston에 의한 커먼레일 디젤기관의 연소성 향상에 관한 고찰 (The Study for Improving the Combustion in a Common-rail Diesel Engine using Swirl Groove Piston)

  • 방중철
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.145-151
    • /
    • 2010
  • The performance of a direct-injection diesel engine often depends on the strength of swirl or squish, the shape of combustion chamber, the number of nozzle holes, etc. This is natural because the combustion in the cylinder was affected by the mixture formation process. Since the available duration to make the mixture formation of air-fuel is very short, it is difficult to make complete mixture. Therefore, an early stage of combustion is violent, which leads to the weakness of noise and vibration. In this paper, the combustion process of a common-rail diesel engine was studied by employing two kinds of pistons. One has several grooves with inclined plane on the piston crown to generate swirl during the compression and expansion strokes in the cylinder in order to improve the atomization of fuel. The other is a toroidal piston, generally used in high speed diesel engines. To take photographs of flame and flaming duration, a four-stroke diesel engine was remodeled into a two-stroke visible single cylinder engine and a high speed video camera was used.