• 제목/요약/키워드: Common rail direct injection

검색결과 101건 처리시간 0.022초

앞먹임 신경회로망을 이용한 HSDI Common-Rail 인젝터의 파라미터 추정 및 모델링 (Parameter Estimation and Modeling of HSDI Common-Rail Injector Using Feedforward Neural Network)

  • 윤마루;선우명호;이강윤;이승종
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.984-988
    • /
    • 2004
  • This study presents the process of the solenoid parameter estimation of an common-rail injector fer HSDI(High Speed Direct Injection) diesel engines. The EMF(Electromotive Force) and solenoid inductance are the major parameters for presenting the injector dynamics, and also these parameters are estimated by using a multi-layer feedforward artificial neural networks(ANN). The performances of parameter estimators are verified by the simulation with injector model. The feasibility of this methodology is closely examined through the simulation in the various operating points of injector. The simulation results have revealed that estimated parameters show favorable agreements with the common-rail injector model.

커먼레일용 연료분사 인젝터의 설계변수에 대한 민감도 분석 (Sensitivity Analysis on Design Parameters of the Fuel Injector for CRDI Engines)

  • 장주섭;윤영환
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.107-114
    • /
    • 2009
  • A Common-Rail Direct Injection (CRDI) system for high speed diesel engines was developed to meet reductions of noise and vibration, emission regulations. High pressure in the common rail with electric control allows the fuel quantity and injection timing to be optimized and controlled throughout a wide range of engine velocity and load conditions. In this study, CRDI system analysis model which includes fuel and mechanical systems was developed using commercial software, AMESim in order to predict characteristics for various fuel injection components. The parameter sensitivity analysis such as throttle size, injection rate, plunger displacement, supply pressure of fuel injection for system design are carried out.

직접분사식 디젤기관의 연소 및 배기에 관한 연구 (A Study on Combustion and Exhaust Emission in Direct Injection Diesel Engine)

  • 김두범;김기복;김치원;한성현
    • 한국산업융합학회 논문집
    • /
    • 제20권2호
    • /
    • pp.105-113
    • /
    • 2017
  • Recently the direct injection diesel engine is the most efficient one available for road vehicles, so this fundamental advantage suggests the compression injection diesel engine are a wise choice for future development efforts. The compression ignition diesel engine, with its bigger compression ratios if compared to the SI engine, offers a higher thermodynamic efficiency, also additionally the diesel engine with its less pumping losses due to the throttled intake charge as in a SI engine has higher fuel economy. But the largest obstacle to the success of this engine is meeting emission standards for Nitric oxides and particulate matter while maintain fuel consumption advantage over currently available engines. Thus its use should be largely promoted, however, diesel engine emits more Nitric oxides and particulate matter than other competing one. There has been a trade-off between PM and NOx, so efforts to reduce NOx have increased PM and vice versa, but trap change this situation and better possibility emerge for treating NOx emission with engine related means, such as injection timing, equivalence ratio, charge composition, and engine speed. The common rail direct injection system is able to adjust the fuel injection timing in a compression ignition engine, so this electronically controlled injection system can reduce the formation of NOx gas without increase in soot. In this study it is designed and used the engine test bed which is installed with turbocharge and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and exhaust emission as operating parameters.

SEOUL-10 모드에서 바이오디젤유 (5%) 적용시 커먼레일 디젤기관의 배기배출물 및 내구 특성 (Characteristics of Durability and Emission with Biodiesel Fuel (5%) in a Common Rail Direct Injection Diesel Engine at SEOUL-10 Mode)

  • 최승훈;오영택;김건회
    • Journal of Biosystems Engineering
    • /
    • 제32권2호
    • /
    • pp.97-101
    • /
    • 2007
  • A CRDI diesel engine used to commercial vehicle was fueled with diesel fuel and 5% biodiesel blended fuel (BDF 5%) and tested at the Seoul-10 mode for 150 hours. Engine dynamometer testing was completed at regularly scheduled intervals to monitor the engine performance and exhaust emissions. To check the engine parts (valve, injector), the engine was inspected after 150 hours running test. It was concluded that there was no unusual deterioration of the engine, or the changes in engine power (below 2.6%), smoke (below 6.2%), NOx (below 2%) and durability characteristics in spite of operation of 150 hours run with BDF 5%. The difference of kinetic viscosity for engine oil (before and after durability testing) was below 0.36%

커먼레일 디젤엔진에서 DME의 연소 및 배기 특성 (Combustion and Exhaust Emission Characteristics of DME in a Common-rail Diesel Engine)

  • 안상규;김명윤;윤승현;이제형;이창식
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.74-80
    • /
    • 2007
  • An experiment was conducted with a common-rail direct injection diesel engine operated with neat dimethyl ether (DME). In order to investigate the effect of combustion characteristics and emission reduction of DME fuel, the experiment was performed at various injection pressure from 35 MPa to 50MPa. Also, the exhaust emissions from the engine were compared with that of diesel fuel. In this work, Cooled EGR was implemented to reduce $NO_x$ exhaust emissions. The results showed that DME has shorter ignition delay than that of diesel fuel. Despite of the increased $NO_x$ emissions with DME at an equal engine power compared to the case of fueling diesel, the engine emitted zero soot emissions all over the operating conditions in this work. $NO_x$ emission can be decreased greatly by adopting 45% of EGR while maintaining zero soot emission. Judging from the result of engine test, DME is a suitable fuel for common-rail diesel engine due to it's clean emission characteristics.

3중분사가 HSDI 디젤엔진의 성능과 배기에 미치는 영향 (The Effect of Triple Injection on Engine Performance and Emissions in a HSDI Diesel Engine)

  • 최욱;박철웅;국상훈;배충식
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.40-57
    • /
    • 2004
  • The effects of triple (pilot, main and after) injection on combustion and emission characteristics in a HSDI (High-Speed Direct Injection) diesel engine were investigated using a single-cylinder optical diesel engine equipped with a common-rail injection system. The pilot injection affected the spray and combustion evolution of the following main injection. It was found that the pilot injection reduced the ignition delay, which led to lowered NOx (Nitric Oxides) level, and increased IMEP (Indicated Mean Effective Pressure) due to slow combustion pace during an expansion stroke. The after-injection was shown to be effective in reducing PM (Particulate Matter) even when a small amount of fuel was added. The results suggest that a proper combination of individual injection strategy could bring about a good synergetic effect on engine performance and emission.

Swirl Groove Piston에 의한 커먼레일 디젤기관의 연소성 향상에 관한 고찰 (The Study for Improving the Combustion in a Common-rail Diesel Engine using Swirl Groove Piston)

  • 방중철
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.145-151
    • /
    • 2010
  • The performance of a direct-injection diesel engine often depends on the strength of swirl or squish, the shape of combustion chamber, the number of nozzle holes, etc. This is natural because the combustion in the cylinder was affected by the mixture formation process. Since the available duration to make the mixture formation of air-fuel is very short, it is difficult to make complete mixture. Therefore, an early stage of combustion is violent, which leads to the weakness of noise and vibration. In this paper, the combustion process of a common-rail diesel engine was studied by employing two kinds of pistons. One has several grooves with inclined plane on the piston crown to generate swirl during the compression and expansion strokes in the cylinder in order to improve the atomization of fuel. The other is a toroidal piston, generally used in high speed diesel engines. To take photographs of flame and flaming duration, a four-stroke diesel engine was remodeled into a two-stroke visible single cylinder engine and a high speed video camera was used.

커먼레일 디젤 엔진의 균일 예혼합 연소 및 배기특성 (Homogeneous Charge Compression Ignition Combustion and Exhaust Characteristics of a Common-rail Diesel Engine)

  • 윤승현;이두진;김명윤;이제형;이창식
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.75-81
    • /
    • 2005
  • An experimental study on homogeneous charge compression ignition combustion with direct fuel injection was conducted using a single cylinder common-rail diesel engine. To improve the homogeneity of fuel-air mixture, the premixed fuel (gasoline) was injected into premixing chamber and the diesel fuel was injected into the combustion chamber as an ignition source for the gasoline premixture. The experimental results show that soot emissions were dramatically reduced with the increase of fuel premixing ratio, however incomplete products such as HC and CO increased with the increase of the premixed ratio. Earlier injection of Dl diesel fuel increased the IMEP with the decrease of HC and CO concentrations.

스프링하중을 고려한 디젤차량용 오버플로우 밸브 성능평가 (Overflow Valve and Performance Evaluation System for Diesel Cars based on Spring Load)

  • 윤달환
    • 전기전자학회논문지
    • /
    • 제20권2호
    • /
    • pp.200-204
    • /
    • 2016
  • 본 연구에서는 유로형(EURO type) 클린 디젤 CRDI(common rail direct injection) 엔진용 오버플로우 밸브 성능 평가 시스템을 구현한다. 친환경 조건에 맞도록 정밀 기능을 구비한 오버플로우를 위해 스프링의 하중을 고려한 구현이 중요하다. 특히 정밀제어에 따른 디젤 차량의 성능평가는 연비 향상과 환경 규제 만족이 필연적이다. 이에 성능평가를 위한 평가 알고리즘의 기본 조건은 100cc 미만에서 3.0 bar, 150 cc 이상에서 3.3 bar, 250 cc이상에서 4.0 bar를 사용하여 시험한다.

커먼 레일 시스템 고압 연료 분사용 스월 노즐 인젝터의 분사 특성에 관한 연구 (A Study on the Injection Characteristics of Swirl Nozzle Injector in Common-rail System for High Pressure Fuel Injection)

  • 신윤섭;이기수;김현철;곽상신;신석신;서현규
    • 한국자동차공학회논문집
    • /
    • 제21권4호
    • /
    • pp.89-95
    • /
    • 2013
  • In this work, the evaluation of swirl nozzle injector performance was conducted by investigating effective area ($A_{eff}$), injection mass ($m_{inj}$), injection rate ($Q_{inj}$), and injection delay ($t_{delay}$) under various test conditions. To achieve these, fuel injection analysis system which was composed of fuel supply system, injection system, and control system was installed. At the same time, the swirl nozzle that had 12 orifice hole with $120^{\circ}$ injection angle was used in this work. It was revealed that the difference of injection mass ($m_{inj}$) between base and swirl nozzle injector increased as the injection pressure ($P_{inj}$) and energizing duration ($t_{eng}$) decreased under the same test conditions. The maximum injection rate ($Q_{inj}$) of swirl nozzle injector was higher than base nozzle injector about 2~5%. The injection performance of swirl nozzle was better than base nozzle at low injection pressure ($P_{inj}$) and short energizing duration ($t_{eng}$) conditions.