• Title/Summary/Keyword: Common rail

Search Result 362, Processing Time 0.032 seconds

Improvement of Emission Performances of a HSDI Diesel Engine with Partial Premixed Compression Ignition Combustion Method (부분 예혼합 압축착화 연소기법을 적용한 HSDI 디젤엔진의 배기 성능 개선)

  • Chung, Jae-Woo;Kang, Jeong-Ho;Kim, Nam-Ho;Min, Kyoung-Doug;Lee, Ki-Hyung;Lee, Jeong-Hoon;Kim, Hyun-Ok;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.88-96
    • /
    • 2008
  • Currently, due to the serious world-wide air pollution by substances emitted from vehicles, emission control is enforced more firmly and it is expected that the regulation requirements for emission will become more severe. A new concept combustion technology that can reduce the NOx and PM in relation to combustion is urgently required. This study used a split injection method at a 4 cylinder common-rail direct injection diesel engine in order to apply the partially premixed charge compression ignition combustion method without significantly altering engine specifications And it is investigated that the effects of the injection ratio and SCV(swirl control valve) to emission characteristics. From these tests, soot(g) and NOx(g) emission could be reduced to 40% and 92% compared to base engine performance at specified engine driving conditions(6 points with weight factors) according to application of split injection and SCV(swirl control valve).

A Study on Combustion and Emission Characteristics in Compression Ignition CRDI Diesel Engine (직접분사식 압축점화 디젤엔진의 연소 및 배기특성에 관한 연구)

  • Kim, Gi-Bok;Choi, Il-Dong;Ha, Ji-Hoon;Kim, Chi-Won;Yoon, Chang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.4
    • /
    • pp.234-244
    • /
    • 2014
  • Recently it has been focused that the automobile engine has developed in a strong upward tendency for the use of the high viscosity and poorer quality fuels in achieving the high performance, fuel economy, and emission reduction. Therefore it is not easy to solve the problems between low specific fuel consumption and exhaust emission control at motor cars. In this study, it is designed and used the engine test bed which is installed with turbocharger and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and exhaust emission as operating parameters, and they were engine speeds(rpm), injection timing(bTDC), and engine load(%). From the result of an experimental analysis, peak cylinder pressure and the rate of pressure rise were increased, and the location of it was closer toward top dead center according to the increasing of engine speed and load, and with advancing injection timing. The combustion characteristics are effected by fuel injection timing due to be enhanced the mass burned fraction. Using the engine dynamometer for analyzing the engine performance, the engine torque and power have been enhanced according to advancing the fuel injection timing. In analyzing of exhaust emission, there has been a trade-off between PM and NOx with increasing of engine speed and load, and with advanced injection timing. The experimental data are shown that the formation of NOx has increased and PM, vice versa.

Performance Prediction according to Equivalence Ratio Change in Simulated-EGR Compression Ignition Engine Containing CO2 (CO2를 포함한 Simulated-EGR 압축착화엔진에서 당량비 변화에 따른 성능 예측)

  • Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.25 no.1
    • /
    • pp.21-26
    • /
    • 2020
  • The objective of this work is to numerically reveal the effect of equivalence ratio change on the simultaneous reduction of NOX and soot emissions from the simulated-EGR compression ignition engine containing CO2. An experiment was conducted by using a single-cylinder common-rail injection system engine, an intake control system, and exhaust emissions analyzers. The numerical analysis results were validated under the same experimental conditions. To investigate the effect of equivalence ratio by simulated-EGR containing CO2, the O2, N2, and CO2 mole fraction were changed in the initial air conditions to the cylinder. The results were analyzed in terms of peak cylinder pressure, indicated mean effective pressure, indicated specific nitrogen oxide, and indicated specific soot. It was revealed that ignition delay characteristics and heat release rate (ROHR) characteristics were not significantly different according to the equivalence ratio. However, as the equivalence ratio increased from 0.68 to 0.83, the maximum combustion pressure and IMEP decreased by about 6.5% and 9.4%, respectively. In the case of ISFC, as is well known, the trend is opposite of IMEP. In the case of ISNO, as the equivalence ratio increased, less NO was generated, and as the equivalence ratio increased by 0.05, the ISSoot value of about 10% increased.

A Study on Measurements of PM Size in a Single Cylinder Common-rail Diesel Engine Exhaust using LII Method (레이저 유도 백열법을 이용한 단기통 커먼레일 디젤 엔진 배기에서의 PM 크기 계측에 관한 연구)

  • Chun, Hong-Sik;Kim, Hui-Jun;Ryu, Hoon-Chul;Park, Jong-Il;Hahn, Jae-Won;Chun, Kwang-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.95-102
    • /
    • 2006
  • Recently particulate matter(PM) emission regulations are becoming more strict for diesel engines. There is increasing interest for measuring not only concentration but also size of the particles. Laser-induced incandescence (LII) has emerged as a promising technique for measuring particle volume fraction and size. In this study, the Simple Time Resolved-LII method was applied to exhaust of Ethylene diffusion flame and diesel engine exhaust for measuring soot and PM size. The particle size data from LII technique were calibrated using Field Emission Scanning Electron Microscope(FE-SEM) and Transmission Electron Microscope(TEM) photographs. In diesel engine experiments for particle size measurement, results from LII measurement are in a good agreement with those from TEM photograph, and difference between two measurements was less than 16%.

Effects of Aromatics and T90 Temperature of Low Cetane Number Fuels on Exhaust Emissions in Low-Temperature Diesel Combustion (저온디젤연소에서 저세탄가 연료의 방향족 및 T90 온도가 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1121-1126
    • /
    • 2010
  • This study is to investigate the effects of aromatics and T90 for low cetane number (CN) fuels on combustion and exhaust emissions in low-temperature diesel combustion. We use a 1.9-L common rail direct injection diesel engine at 1500 rpm and 2.6 bar BMEP. Low temperature diesel combustion was achieved via a high external EGR rate and strategic injection control. The tested fuels four sets: the aromatic content was 20% (A20) or 45% (A45) and the T90 temperature was $270^{\circ}C$ (T270) or $340^{\circ}C$ (T340) with CN 30. Given the engine operating conditions, the T90 was the stronger factor on the ignition delay time, resulting in a longer ignition delay time for higher T90 fuels. All the fuels produced nearly zero PM because of the extension of the ignition delay time induced by the low cetane number. The aromatic content was the main factor that affected the NOx and the NOx increased with the aromatic content.

Effects of Soybean Biodiesel Fuel on Exhaust Emissions in Compression Ignition Combustion (대두유 바이오 디젤연료가 압축 착화 연소에서 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.941-946
    • /
    • 2010
  • This study aims to investigate the effects of soybean biodiesel fuel on exhaust emissions with regards to two combustion modes: conventional combustion(existence of PM-NOx trade-off behavior) and low temperature combustion(LTC) in a 1.7 L common rail direct injection diesel engine. As compared to conventional combustion, LTC was achieved by adopting a heavier exhaust gas recirculation and strategic injection parameter optimization. Two sets of fuels, i.e. ultra low sulfur diesel(ULSD) and 20% volumetric blends of soybean biodiesel with ULSD(B20) were used. Regardless of the fuel type, in LTC the simultaneous reduction of PM and NOx was observed and both levels were significantly lower than in case of conventional combustion. Under the given engine operating condition in the case of conventional combustion, B20 produced less PM and more NOx than ULSD. In the case of LTC combustion, B20 produced more PM and NOx than ULSD.

A Study on PM Regeneration Characteristics of Diesel Passenger Vehicle with Passive Regeneration DPF System (자연재생방식 DPF시스템 부착 경유승용차량의 PM재생 특성 연구)

  • Lee, Jin-Wook;Cho, Gyu-Baek;Kim, Hong-Suk;Jeong, Young-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.188-194
    • /
    • 2007
  • New diesel engines equipped with common-rail injection systems and advanced engine management control allow drastic decreases in the production of particulate matters and nitrogen oxides with a significant advantage in terms of the fuel consumption and $CO_2$ emissions. Nevertheless, the contribution of exhaust gas after treatment in the ultra low emission vehicles conception has become unavoidable today. Recently the passive type DPF(Diesel Particulate Filter Trap) system for diesel passenger vehicle has been manufactured into mass production from a French automotive maker since the year of 2000. This passive DPF system fully relies on the catalytic effects from additives blended into the diesel fuel and additives injected into the DPF system. In this study, the effects of PM regeneration in the commercial diesel passenger vehicle with the passive type DPF system were investigated in chassis dynamometer CVS(constant volume sampler)-75 mode. As shown in this experimental results, the DPF regeneration was observed at temperature as low as $350^{\circ}C$. And the engine-controlled the DPF regeneration founded to be one of the most promising regeneration technologies. Moreover, the durability of this DPF system was evaluated with a season weather in terms of the differential pressure and exhaust gas temperature traces from a road test during the total mileage of 80,000km.

A Study on the Additional Train Scheduling Method (열차 증편방법에 관한 연구)

  • Kim, Young-Hoon;Rim, Suk-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.313-319
    • /
    • 2014
  • Additional train scheduling is often required to increase the capacity of transporting passengers or freight. In most previous studies on scheduling additional trains, operation time of the added train is designated first; and then the train operation feasibility is examined. However, it is often difficult to apply this approach to domestic trains because the density of the railroad network in Korea is high and various types of trains are in use. Moreover, for freight trains, it is even more challenging because the delay is accumulated due to lower priority whenever a freight train and a passenger train contend for a common segment of rail. In this paper, we address the additional train scheduling problem which entails finding a feasible schedule for an additional train having a fixed departure time or departure time windows. The problem is modeled as a mixed integer programming and a column generation technique is used to solve it.

Comparison of Macroscopic Spray Characteristics of Dimethyl Ether with Diesel (Dimethyl Ether와 디젤의 거시적 분무 특성 비교)

  • Yu, J.;Lee, J. K.;Bae, C. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.73-80
    • /
    • 2002
  • Dimethyl ether (DM) is one of the most attractive alternative fuel far compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the intrinsic properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-holes sac type injector (hole diameter 0.168 ㎜/hole) was performed in a high pressure chamber pressurized with nitrogen gas. A CCD camera was employed to capture time series of spray images followed by spray cone angles and penetrations of DME were characterized and compared with those of diesel. Under atmospheric pressure condition, regardless of injection pressure, spray cone angles of the DME were wider than those of diesel and penetrations were shorter due to flash boiling effect. Tip of the DME spray was farmed in mushroom like shape at atmospheric chamber pressure but it was disappeared in higher chamber pressure. On the contrary, spray characteristics of the DME became similar to that of diesel under 3MPa of chamber pressure. Hole-to-hole variation of the DME spray was lower than that of diesel in both atmospheric and 3MPa chamber pressures. At 25MPa and 40MPa of DME injection pressures, regardless of chamber pressure, intermittent DME spray was observed. It was thought that vapor lock inside the injector was generated under the two injection pressures.

A Study on Spray and Combustion Characteristics of Biodiesel Blended Diesel Fuel in a Constant Volume Combustion Chamber (바이오디젤이 혼합된 디젤 연료의 분무 및 연소 특성에 관한 연구)

  • Suh, Hyun-Uk;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.132-136
    • /
    • 2015
  • The objective of this study is to investigate the effect of biodiesel blending on spray and combustion characteristics. In order to this, blended fuels containing 0, 5, 20, 50, 100% biodiesel in weight fraction was injected via common rail to constant volume combustion chamber. As a result, spray cone angle decreased and the Sauter mean diameter increased because of the higher dynamic viscosity and density of biodiesel, however, it does not seemed that spray penetration was affected by these factors considerably. In the combustion experiment, ignition delay of biodiesel was shorter than that of diesel due to higher cetane number. And the peak value of heat release rate increased and the end of combustion was advanced owing to higher combustion efficiency cause by the characteristic of oxygenated fuel.