• 제목/요약/키워드: Common rail

검색결과 362건 처리시간 0.025초

커먼레일 시스템용 저압 유압회로의 성능특성에 관한 연구 (A Study on the Performance Characteristics of Low Pressure Hydraulic Circuit of Common Rail System)

  • 이춘태
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.51-57
    • /
    • 2014
  • High pressure common rail injection technology has revolutionized the diesel industry. Over the last decade it has allowed engine builders to run higher injection pressures as much as above 1,300bar in order to increase engine efficiency, while reducing emissions. This common rail system has low pressure circuit which is consist of low pressure pump, cascade overflow valve and flow metering unit. The low pressure pump's purpose is to feed fuel oil to the high pressure pump. The cascade overflow valve keeps pressure in front of the metering unit constant and provides lubrication for the high pressure pump. The metering unit, known as the MPROP or fuel pressure regulator, regulates the maximum flow rate delivers to the rail. In this paper, we have investigated the performance characteristics of each components and total low pressure circuit of common rail system.

커먼 레일 시스템 인젝터의 파라미터 변화에 따른 거동특성 해석 (Analysis of Behavior Characteristics of Common Rail System Injector for the Variations of Injector Parameters)

  • 김중배
    • 한국소음진동공학회논문집
    • /
    • 제19권5호
    • /
    • pp.499-508
    • /
    • 2009
  • This paper focuses on the modelling of common rail diesel injector using the AMESim code and shows the appropriateness of the developed model. For the developed injector model, simulations are carried out to analyze the behavior characteristics of the injector for the variations of injector model parameters such as orifice diameters, rail pressures, and energizing times. Simulation results show that the diameters of inlet and outlet orifices have close relation with injection quantity. Increment of rail pressure and energizing time provides increment of injection quantity, and simulated energizing time map shows injection characteristics of the common rail injector.

앞먹임 신경회로망을 이용한 HSDI Common-Rail 인젝터의 파라미터 추정 및 모델링 (Parameter Estimation and Modeling of HSDI Common-Rail Injector Using Feedforward Neural Network)

  • 윤마루;선우명호;이강윤;이승종
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.984-988
    • /
    • 2004
  • This study presents the process of the solenoid parameter estimation of an common-rail injector fer HSDI(High Speed Direct Injection) diesel engines. The EMF(Electromotive Force) and solenoid inductance are the major parameters for presenting the injector dynamics, and also these parameters are estimated by using a multi-layer feedforward artificial neural networks(ANN). The performances of parameter estimators are verified by the simulation with injector model. The feasibility of this methodology is closely examined through the simulation in the various operating points of injector. The simulation results have revealed that estimated parameters show favorable agreements with the common-rail injector model.

커먼레일 직접분사(CRDi)용 고압 디젤인젝터의 구동방식별 Pilot Spray 특성비교(II) - 솔레노이드 및 피에조 구동방식 비교분석 - (Comparison of Pilot Spray Characteristics of HP Diesel Injectors with Different Driving Method for CRDi System (II))

  • 이진욱
    • 한국분무공학회지
    • /
    • 제15권2호
    • /
    • pp.67-73
    • /
    • 2010
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail direct injection system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors with different electric driving characteristics, including solenoid-driven and piezo-driven type. Namely three common-rail injectors with different electric current wave were investigated in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. As this research results, it was found that pilot injection of common-rail system was effected by rate of injection with different electrical characteristic for injector driving.

커먼레일 직접분사(CRDi)용 고압 디젤인젝터의 구동방식별 Pilot Spray 특성비교 (I) - 실제 직접분사식 디젤엔진에서의 사전분사 특성 분석 - (Comparison of Pilot Spray Characteristics of HP Diesel Injectors with Different Driving Method for CRDi System (I))

  • 이진욱
    • 한국분무공학회지
    • /
    • 제15권1호
    • /
    • pp.25-30
    • /
    • 2010
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail direct injection system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors with different electric driving characteristics, including solenoid-driven and piezo-driven type. Namely three common-rail injectors with different electric current wave were investigated in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. As this research results, it was found that pilot injection of common-rail system was effected by rate of injection with different electrical characteristic for driving the injector.

커먼레일 파이프의 구조해석 및 피로수명에 관한 연구 (A Study on Structure Analysis and Fatigue Life of the Common Rail Pipe)

  • 송명준;정성윤;황범철;김철
    • 소성∙가공
    • /
    • 제19권2호
    • /
    • pp.88-94
    • /
    • 2010
  • The next generation of diesel engine can operate at high injection pressure up to 1,800bar. The common rail pipe must have higher internal strength because it is directly influenced by the high-pressure fuel. Folding defects in the Common rail pipe can not ensure the structural safety. Therefore, Preform design and fatigue-life analysis are very important for preventing the head of the common rail pipe from folding in the heading process and for predicting fatigue life according to the amount of folding. In this study, a closed form equation to predict fatigue life was suggested by Goodman theory and pressure vessels theory in ASME Code in order to develop an optimization technique of the heading process and verified its reliability through fatigue-structural coupled field analysis. The results calculated by the theory were in good agreement with those obtained by the finite element analysis.

승용 CR 연료분사시스템에 대한 유압 Modal 분석 (Hydraulic Modal Analysis of High-Pressure Common-rail Fuel Injection System for Passenger Vehicle)

  • 성기수;김상명;김진수;이진욱
    • 한국분무공학회지
    • /
    • 제20권1호
    • /
    • pp.14-19
    • /
    • 2015
  • Recently, R&D demand for environmental friendly vehicle has rapidly increased due to its global environmental issues such as global warming, energy and economic crisis. Under this situation, the most realistic alternative way for environmental friendly vehicle is a clean diesel vehicle. The common-rail fuel injection system, as key technology of clean diesel vehicle, consists of a high pressure pump, common-rail, high pressure fuel line and electronic control injector. In common-rail high-pressure fuel injection system, high pressure wave of injection system and geometry of injector elements have a major effects on high-pressure fuel spray. Therefore, in this study, the numerical model was developed for analysis about the common-rail fuel pressure pulsation by using AMESim code. We could secure stability of common-rail high-pressure fuel injection system through optimal design of fuel line.

전기철도의 공용접지 시스템에 대한 안정성 평가에 관한 연구 (Safely Evaluation on Common Grounding System for Electric Railway)

  • 송진호;황유모
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권6호
    • /
    • pp.298-306
    • /
    • 2002
  • We performed an safety evaluation on constructing of a common grounding system for electrical railway in view of its efficacy and technical fit. In order to compare the conventional grounding method, which has been individually conducted, with the common grounding with all ground wires connected in common to the counterpoise buried below the surface of the earth in parallel with rail, we set up scenarios with several cases of fault and load conditions in Chungbuk railway sections with the common grounding system. Based on models for railway conductors including the grounded system, line Parameters of railway power system are computed. The circuit model for power system with up and down lines, auto-transformers and railway substations is used to compute impedances of counterpoise and substation ground net. For each scenario with faults and operation conditions of railway, the induced potentials on signal and communication lines are also computed. It is shown that the common grounding for Chungbuk railway is superior experimentally to the conventional method in three respects: (1) the lower rail potentials during operation of railway in line, (2) the lower rail potentials for short-circuit faults between catenary and rail, and (3) the lower stress voltages on signal and communication lines for short-circuit or ground faults. The analysis results confirm that the grounding system for electric railway is required to be built by the common grounding and be evaluated on its safety in design.

승용디젤엔진의 과도구간 입자상물질 저감 및 운전성능 향상을 위한 연료분사량 및 커먼레일압력 제어전략 (A Control Strategy of Fuel Injection Quantity and Common-rail Pressure to Reduce Particulate Matter Emissions in a Transient State of Diesel Engines)

  • 홍승우;정동혁;선우명호
    • 한국자동차공학회논문집
    • /
    • 제23권6호
    • /
    • pp.623-632
    • /
    • 2015
  • This study proposes a control strategy of the common rail pressure with a fuel injection limitation algorithm to reduce particulate matter (PM) emissions under transient states. The proposed control strategy consists of two parts: injection quantity limitation and rail pressure adaptation. The injection limitation algorithm determines the maximum allowable fuel injection quantity to avoid rich combustion under transient states. The fuel injection quantity is limited by predicting the burned gas rate after combustion; however, the reduced injection quantity leads to deterioration of engine torque. The common rail pressure adaptation strategy is designed to compensate for the reduced engine torque. An increase of the rail pressure under transient states contributes to enhancement of the engine torque as well as reduction of PM emissions by promoting atomization of the injected fuel. The proposed control strategy is validated through engine experiments. The rail pressure adaptation reduced the PM emission by 5-10% and enhanced the engine torque up to 2.5%.