• Title/Summary/Keyword: Committed Effective Dose

Search Result 27, Processing Time 0.019 seconds

Potential Errors in Committed Effective Dose Due to the Assumption of a Single Intake Path in Interpretation of Bioassay Results (바이오어세이 결과 해석에서 단일 섭취경로 가정에 따르는 예탁유효선량의 잠재오차)

  • Lee, Jong-Il;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.3
    • /
    • pp.135-140
    • /
    • 2006
  • Intakes of radionuclides through both inhalation and ingestion pathways may occur particularly in an incident involving unsealed radionuclides. If one assume only one intake path in this case, which is usual in routine monitoring, a significant error in the evaluated committed effective dose($E_{50}$) may result. In order to demonstrate the potential errors, variations of the resulting committed effective doses were analyzed for different fractions of the inhaled activities to the total intake of $^{241}Am$. Simulated bioassav measurements for the lungs, urine and feces were generated based on the biokinetic model and data of the radionuclide, 5 ${\mu}m$ AMAD and absorption type M for inhalation, for various inhalation fractions. The potential errors in $E_{50}$ due to the assumption of one intake path were in the range from -100% to as large as +34,000% when the bioassays were made 3 days after the intakes. Larger errors are expected when only the feces assay is applied while inhalation intake exists. A strategy which employs two types of bioassay was proposed to reduce the error caused by a misjudgement of the intake path.

The Experience on Intake Estimation and Internal Dose Assessment by Inhalation of Iodine-131 at Korean Nuclear Power Plants (국내 원전에서 $^{131}I$ 내부 흡입 에 따른 섭취량 산정과 내부피폭 방사선량 평가 경험 몇 개선방향에 대한 연구)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.129-136
    • /
    • 2009
  • During the maintenance period at Korean nuclear power plants, internal exposure of radiation workers occurred by the inhalation of $^{131}I$ released to the reactor building when primary system opened. The internal radioactivity of radiation workers contaminated by $^{131}I$ was measured using a whole body counter. Intake estimation and the calculation of committed effective dose were also conducted conforming to the guidance of internal dose assessments from publications of International Commission on Radiological Protection. Because the uptake and excretion of $^{131}I$ in a body occur quickly and $^{131}I$ is accumulated in the thyroid gland, the estimated intakes showed differences depending on the counting time after intake. In addition, since ICRP publications do not provide the intake retention fraction (IRF) for whole body of $^{131}I$, the IRF for thyroid was substitutionally used to calculate the intake and subsequently this caused more error in intake estimation. Thus, intake estimation and the calculation of committed effective dose were conducted by manual calculation. In this study, the IRF for whole body was also calculated newly and was verified. During this process, the estimated intake and committed effective dose were reviewed and compared using several computer codes for internal dosimetry.

The BIDAS Program : Bioassay Data Analysis Software for Evaluating Radionuclide Intake and Dose (BIDAS프로그램 : 방사성 핵종의 섭취량과 선량 평가용 생물학적분석 자료 해석 소프트웨어 프로그램)

  • Tae-Yong Lee;Jong-Kyung Kim;Jong-Il Lee;Si-Young Chang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.2
    • /
    • pp.113-124
    • /
    • 2004
  • A computer software program, called BIDAS (BIoassay Data Analysis Software) is developed to interpret the bioassay measurement data in terms of intakes and the committed effective dose using the human respiratory tract model (HRTM), gastrointestinal tract (GI-tract) model and biokinetic models currently recommended by the International Commission on Radiological Protection (ICRP) to describe the behavior of the radioactive materials within the body. The program consists of three modules; first, a database module to manage the bioassay data, second, another databasee module to store the predicted bioassay quantities of each radionuclide and finally, a computational module to estimate the intake and committed effective dose calculated with the bioassay quantity measurement values from either an acute or chronic exposure of the radionuclies within the body. This paper describes the features of the program as well as the quality assurance check results of the BIDAS software program.

  • PDF

Assessment of Inhalation Dose Sensitivity by Physicochemical Properties of Airborne Particulates Containing Naturally Occurring Radioactive Materials (천연방사성물질을 함유한 공기 중 부유입자 흡입 시 입자의 물리화학적 특성에 따른 호흡방사선량 민감도 평가)

  • Kim, Si Young;Choi, Cheol Kyu;Park, Il;Kim, Yong Geon;Choi, Won Chul;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.216-222
    • /
    • 2015
  • Facilities processing raw materials containing naturally occurring radioactive materials (NORM) may give rise to enhanced radiation dose to workers due to chronic inhalation of airborne particulates. Internal radiation dose due to particulate inhalation varies depending on particulate properties, including size, shape, density, and absorption type. The objective of the present study was to assess inhalation dose sensitivity to physicochemical properties of airborne particulates. Committed effective doses to workers resulting from inhalation of airborne particulates were calculated based on International Commission on Radiological Protection 66 human respiratory tract model. Inhalation dose generally increased with decreasing particulate size. Committed effective doses due to inhalation of $0.01{\mu}m$ sized particulates were higher than doses due to $100{\mu}m$ sized particulates by factors of about 100 and 50 for $^{238}U$ and $^{230}Th$, respectively. Inhalation dose increased with decreasing shape factor. Shape factors of 1 and 2 resulted in dose difference by about 18 %. Inhalation dose increased with particulate mass density. Particulate mass densities of $11g{\cdot}cm^{-3}$ and $0.7g{\cdot}cm^{-3}$ resulted in dose difference by about 60 %. For $^{238}U$, inhalation doses were higher for absorption type of S, M, and F in that sequence. Committed effective dose for absorption type S of $^{238}U$ was about 9 times higher than dose for absorption F. For $^{230}Th$, inhalation doses were higher for absorption type of F, M, and S in that sequence. Committed effective dose for absorption type F of $^{230}Th$ was about 16 times higher than dose for absorption S. Consequently, use of default values for particulate properties without consideration of site specific physiochemical properties may potentially skew radiation dose estimates to unrealistic values up to 1-2 orders of magnitude. For this reason, it is highly recommended to consider site specific working materials and conditions and use the site specific particulate properties to accurately access radiation dose to workers at NORM processing facilities.

Detection and Measurement of Nuclear Medicine Workers' Internal Radioactive Contamination (핵의학과 종사자의 방사성동위원소 체내오염 측정)

  • Jeong, Gyu-Hwan;Kim, Yong-Jae;Jang, Jeong-Chan;Lee, Jai-Ki
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.123-131
    • /
    • 2009
  • Purpose: We tested a sample of nuclear medicine workers at Korean healthcare institutions for internal contamination with radioactive isotopes, measuring concentrations and evaluating doses of individual exposure. Materials and Methods: The detection and measurement was performed on urine samples collected from 25 nuclear medicine workers at three large hospitals located in Seoul. Urine samples were collected once a week, 100~200 mL samples were gathered up to 6~10 times weekly. A high-purity germanium detector was used to measure gamma radiations in urine samples for the presence of radioactive isotopes. Based on the detection results, we estimated the amounts of intake and committed effective doses using IMBA software. In cases where committed effective doses could not be adequately evaluated with IMBA software, we estimated individual committed effective doses for radionuclides with a very short half life such as $^{99m}Tc$ and $^{123}I$, using the methods recommended by International Atomic Energy Agency. Results: Radionuclides detected through the analysis of urine samples included $^{99m}Tc$, $^{123}I$, $^{131}I$ and $^{201}Tl$, as well as $^{18}F$, a nuclide used in Positron Emission Tomography examinations. The committed effective doses, calculated based on the radionuclide concentrations in urine samples, ranged from 0 to 5 mSv, but were, in the majority of cases, less than 1 mSv. The committed effective dose exceeded 1 mSv in three of the samples, and all three were workers directly handling radioactive sources. No nurses were found to have a committed effective dose in excess of 1 mSv. Conclusions: To improve the accuracy of results, it may be necessary to conduct a long-term study, performed over a time span wide enough to allow the clear determination of the influence of seasonal factors. A larger sample should also help increase the reliability of results. However, as most Korean nuclear medicine workers are currently not necessary to monitored routinely for internal contamination with radionuclides. Notwithstanding, a continuous effort is recommended to reduce any unnecessary exposure to radioactive substances, even if in inconsequential amounts, by regularly surveying workplace environments and frequently monitoring atmospheric concentrations of radionuclides.

  • PDF

Internal Dosimetry: State of the Art and Research Needed

  • Francois Paquet
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.4
    • /
    • pp.181-194
    • /
    • 2022
  • Internal dosimetry is a discipline which brings together a set of knowledge, tools and procedures for calculating the dose received after incorporation of radionuclides into the body. Several steps are necessary to calculate the committed effective dose (CED) for workers or members of the public. Each step uses the best available knowledge in the field of radionuclide biokinetics, energy deposition in organs and tissues, the efficiency of radiation to cause a stochastic effect, or in the contributions of individual organs and tissues to overall detriment from radiation. In all these fields, knowledge is abundant and supported by many works initiated several decades ago. That makes the CED a very robust quantity, representing exposure for reference persons in reference situation of exposure and to be used for optimization and assessment of compliance with dose limits. However, the CED suffers from certain limitations, accepted by the International Commission on Radiological Protection (ICRP) for reasons of simplification. Some of its limitations deserve to be overcome and the ICRP is continuously working on this. Beyond the efforts to make the CED an even more reliable and precise tool, there is an increasing demand for personalized dosimetry, particularly in the medical field. To respond to this demand, currently available tools in dosimetry can be adjusted. However, this would require coupling these efforts with a better assessment of the individual risk, which would then have to consider the physiology of the persons concerned but also their lifestyle and medical history. Dosimetry and risk assessment are closely linked and can only be developed in parallel. This paper presents the state of the art of internal dosimetry knowledge and the limitations to be overcome both to make the CED more precise and to develop other dosimetric quantities, which would make it possible to better approximate the individual dose.

Optimal Monitoring Intervals and MDA Requirements for Routine Individual Monitoring of Occupational Intakes Based on the ICRP OIR

  • Ha, Wi-Ho;Kwon, Tae-Eun;Jin, Young Woo
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.88-94
    • /
    • 2020
  • Background: The International Commission on Radiological Protection (ICRP) has recently published report series on the occupational intakes of radionuclides (OIR) for internal dosimetry of radiation workers. In this study, the optimized monitoring program including the monitoring interval and the minimum detectable activity (MDA) of major radionuclides was suggested to perform the routine individual monitoring of internal exposure based on the ICRP OIR. Materials and Methods: The derived recording levels and the critical monitoring quantities were reviewed from international standards or guidelines by the International Atomic Energy Agency (IAEA), the International Organization for Standardization (ISO), and the European Radiation Dosimetry Group (EURADOS). The OIR data viewer provided by ICRP was used to evaluate the monitoring intervals and the MDA, which are derived from the reference bioassay functions and the dose coefficients. Results and Discussion: The optimal monitoring intervals were determined taking account of two requirement conditions on the potential intake underestimation and the MDA values. The MDA requirement values of the selected radionuclides were calculated based on the committed effective dose from 0.1 mSv to 5 mSv. The optimized routine individual monitoring program was suggested including the optimal monitoring intervals and the MDA requirements. The optimal MDA values were evaluated based on the committed effective dose of 0.1 mSv. However, the MDA can be adjusted considering the practical operation of the routine individual monitoring program in the nuclear facilities. Conclusion: The monitoring intervals and the MDA as crucial factors for the routine monitoring were described to suggest the optimized routine individual monitoring program of the occupational intakes. Further study on the alpha/beta-emitting radionuclides as well as short lived gamma-emitting nuclides will be necessary in the future.

Assessment of Radiological Hazards in Some Foods Products Consumed by the Malian Population Using Gamma Spectrometry

  • Adama Coulibaly;David O. Kpeglo;Emmanuel O. Darko
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.2
    • /
    • pp.84-89
    • /
    • 2023
  • Background: Food consumption is one of the most important routes for radionuclide intake for the public; therefore, there is the need to have a comprehensive understanding of the amount of radioactivity in food products. Consumption of radionuclide-contaminated food could increase potential health risks associated with exposure to radiation such as cancers. The present study aims to determine radioactivity levels in some food products (milk, rice, sugar, and wheat flour) consumed in Mali and to evaluate the radiological effect on the public health from these radionuclides. Materials and Methods: The health impact due to ingestion of radionuclides from these foods was evaluated by the determination of activity concentration of radionuclides 238U, 232Th, 40K, and 137Cs using gamma spectrometry system with high-purity germanium detector and radiological hazards index in 16 samples collected in some markets, mall, and shops of Bamako-Mali. Results and Discussion: The average activity concentrations were 9.8±0.6 Bq/kg for 238U, 8.7±0.5 Bq/kg for 232Th, 162.9±7.9 Bq/kg for 40K, and 0.0035±0.0005 Bq/kg for 137Cs. The mean values of radiological hazard parameters such as annual committed effective dose, internal hazard index, and risk assessment from this work were within the dose criteria limits given by international organizations (International Commission on Radiological Protection and United Nations Scientific Committee on the Effects of Atomic Radiation) and national standards. Conclusion: The results show low public exposure to radioactivity and associated radiological impact on public health. Nevertheless, this study stipulates vital data for future research and regulatory authorities in Mali.