• Title/Summary/Keyword: Commercial vehicles

Search Result 479, Processing Time 0.028 seconds

A Case Study on Failure and Analysis of Air Over Hydraulic Brake Line (공기 유압식 브레이크 라인 파손 사례 및 파손 분석 연구)

  • Park, Jeongman;Park, Jongjin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.47-55
    • /
    • 2020
  • In this case study, the brake line failure of air over hydraulic(AOH) brake system is described. AOH brake system is applied to commercial vehicles between 5 to 8 tons. It consists of a hydraulic system using compressed air and operates the air master to form hydraulic pressure to transfer braking power to the wheels. When the brake lines of the system applied to vehicles with high load capacity are damaged, the braking force of one shaft is lost, and the braking distance increases rapidly, leading to a big accident. Failure of the brake line occurs due to various causes such as road surface fragmentation, corrosion of the line, and aged deterioration of air brake hose. The braking force could be decreased even when a very small break in the form of a pin-hole occurs. However, it is difficult to find a part where the thickness of the line is thin due to stone pecking or corrosion generated in the pin-hole formed on the brake line located under the lower part of the vehicle by the sensory evaluation or the conventional braking force test. Accordingly, it is necessary to analyze the condition and cause of the failure of the brake line more precisely when the accident investigation of the heavy vehicles, and also to examine the necessity of the advanced test for the aged brake line.

Evaluation of Hydrodynamic Performances for New Amphibious Assault Vehicles by Using CFD (CFD를 이용한 차기 상륙돌격장갑차의 유체역학적 성능 평가)

  • Jang, Jaeyeong;Kim, Keunhyong;Lee, Jongjin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.10-16
    • /
    • 2018
  • The Republic of Korea Marine Corps is planning to develop a new amphibious assault vehicle which is able to operate with higher water speed than current KAAV. In order to achieve a higher water speed for hydrodynamically bulff-body vehicles, it is essential to develop drag reduction strategies. In this paper, resistance characteristics including trim angles of amphibious assault vehicles with several appendage designs are investigated using a commercial CFD code, STAR-CCM+. The computed results are compared with experimental data conducted at the towing tank with 1:4.5 scaled model and show good correlation. Comparing with the results of bare hull, 3.4 % of hydrodynamic drag and 52 % of trim angle are reduced by the application of double angled bow flap and a hydrofoil attached at the transom.

Development of a Dynamic Simulation Program for Railway Vehicles (철도차량을 위한 동역학 해석 프로그램 개발)

  • Cho, Jae-Ik;Park, Tae-Won;Yoon, Ji-Won;Kim, Young-Guk
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.473-479
    • /
    • 2009
  • Dynamic analysis is necessary for the High-Speed Railway vehicle which aims to run on max 400km/h. Especially, dynamic simulation using CAE(Computer Aided Engineering) can help to reduce the time of development of the High-Speed Railway vehicles. Also, it helps to reduce prices and improve the quality such as safety, stability and ride. There are many dynamic software for a railway vehicle, such as Vampire and ADAMS-Rail. There are limitations for each software and difficulties to analyze overall dynamics for entire railway system. To overcome these limitations, in this study, a program which can simulate entire railway vehicles was developed. This program is easy to use because it was developed using C++, which is object-oriented programming language. In addition, the basic platform for the development of dynamic solver is prepared using the nodal, modal coordinate system with a wheel-rail contact module. Rigid, flexible and large deformable body systems can be modeled by a user according to the characteristic of a desired system. Its reliability is verified by comparison with a commercial analysis program.

  • PDF

A Study of the Localization Development of Cryogenic Submerged Pump for the Fuel Supply system of 600-Liter-Grade LNG Vehicles (600L급 LNG 차량 연료공급용 초저온 액중펌프 국산화개발에 관한 연구)

  • Kim, Yong Gil;Kim, Do Hyun;Lee, Won Young;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.113-118
    • /
    • 2021
  • In this study, localized development of a submerged cryogenic pump for use in LNG containers is conducted with large-sized commercial vehicles as the target. The submerged pump installed in an LNG storage container is the key module that supplies fuel to the engine through the reciprocating motion of a piston. Research and development on 660-L fuel containers is performed herein. The target is to achieve a mileage of 600 km or more by applying it to major NGV vehicles worldwide. In this manner, the present study aims to verify the operating mechanisms of the major parts of currently advanced products through reverse engineering in the early development process and draw basic design data.

Numerical Analysis on the Resistance and Propulsion Performances of High-Speed Amphibious Assault Vehicles (고속 상륙돌격장갑차의 저항 및 추진 성능에 관한 수치 분석)

  • Kim, Taehyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.84-98
    • /
    • 2021
  • The hydrodynamic characteristics of amphibious assault vehicles are investigated using commercial CFD code, STAR-CCM+. Resistance performances of a displacement-type vehicle and a semi-planing type vehicle are analyzed in calm water. The self-propelled model is also computed for the semi-planing type vehicle. All computations are performed using an overset mesh system and a RANS based flow-solver coupled with a two-degree of freedom equations of motion. A moving reference frame is applied to simulate revolutions of impeller blades for a waterjet propulsion system. Grid dependency tests are performed to evaluate discretization errors for the mesh systems. The numerical analysis results are compared with the experimental results obtained from model tests. It is shown that RANS is capable of investigating the resistance and self-propulsion characteristics of high-speed amphibious assault vehicles. It is also found that a fully covered side skirt, which is covering tracks, reduces resistance and stern trim, besides increasing propulsive efficiency.

Patent Trend Analysis of Unmanned Ground Vehicles(UGV) using Topic Modeling (토픽모델링을 이용한 무인지상차량(UGV) 특허 동향 분석)

  • Kihwan Kim;Chasoo Jun;Chiehoon Song;Jeonghwan Jeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.395-405
    • /
    • 2024
  • This study provides a thorough examination of Unmanned Ground Vehicles(UGVs), focusing on crucial technologies and trends across major global markets. It includes an in-depth patent analysis revealing the dominant positions of the United States and the European Union in this field. Additionally, it underscores substantial advancements made by China, Japan, and Korea since 2010. Using Latent Dirichlet Allocation(LDA)-based patent text mining, the study identified key technology areas in UGV development, such as advanced control systems, navigation technologies, power supply mechanisms, and sensing and communication tools. Through linear regression analysis, the study predicted the future paths of these technology areas, offering important insights into the evolving world of UGV technology. The findings can provide strategic guidance for stakeholders in the defense, commercial, and academic sectors, pointing out the future directions in UGV advancements.

Combining Vehicle Routing with Forwarding : Extension of the Vehicle Routing Problem by Different Types of Sub-contraction

  • Kopfer, Herbert;Wang, Xin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • The efficiency of transportation requests fulfillment can be increased through extending the problem of vehicle routing and scheduling by the possibility of subcontracting a part of the requests to external carriers. This problem extension transforms the usual vehicle routing and scheduling problems to the more general integrated operational transportation problems. In this contribution, we analyze the motivation, the chances, the realization, and the challenges of the integrated operational planning and report on experiments for extending the plain Vehicle Routing Problem to a corresponding problem combining vehicle routing and request forwarding by means of different sub-contraction types. The extended problem is formalized as a mixed integer linear programming model and solved by a commercial mathematical programming solver. The computational results show tremendous costs savings even for small problem instances by allowing subcontracting. Additionally, the performed experiments for the operational transportation planning are used for an analysis of the decision on the optimal fleet size for own vehicles and regularly hired vehicles.

REAL-TIME SPATIAL ANALYSIS FOR GPS/GIS-BASED AVL SYSTEM

  • Kim, Kwang-Soo;Kim, Min-Soo;Choi, Hae-Ock;Lee, Jong-Hun
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.194-197
    • /
    • 1999
  • In AVL, GIS analyze the information from the vehicles to provide commercial or other value far user. As spatial analysis functions in GIS make a new valuable information using the vehicle's position and geographic object's location, they perform an important roles to improve the management efficiency of vehicles. Most GIS however are used static data for the spatial analysis, so the research area on AVL used dynamic vehicle location has generated unsuitable result. In this study, we use GPS real time tracking data to perform spatial analysis between moving vehicle and static geographic object. The method proposed in this paper considers the driving direction of vehicle and creates the result which is located in forward of vehicle. In this paper, two spatial analysis functions, near and connectivity, are developed.

  • PDF

Design of a New Linear Magnetic Damper for Shock-Absorbing from Crash Accident of High Speed Vehicles (고속 차량 충돌 사고 대비를 위한 충격 흡수용 자기식 댐퍼 설계)

  • Lee, Heon;Kim, Youg-Dae;Wang, Se-Myung;Park, Kyi-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.653-654
    • /
    • 2006
  • This paper proposes a new linear magnetic damper for absorbing shock from a crash accident involving high speed vehicles. The magnetic damper is composed of a conductive plate, a yoke and permanent magnets which are constructed to a Halbach array to improve the damping force. In order to calculate the damping force, finite element analysis(FEA) using J-Mag, a commercial FEA tool, is performed and the results are validated by the experiment. Also, the design optimization of the plate generating the eddy current causing the damping force performed to obtain the most efficient damping force. Finally, the specifications and the performance of the proposed magnetic damper are represented.

  • PDF

Virtual Fatigue Analysis of a Small-sized Military Truck Considering Actual Driving Modes (실 주행조건을 고려한 군용 소형트럭의 가상 내구해석)

  • Suh, Kwon-Hee;Lim, Hyeon-Bin;Song, Bu-Geun;Ahn, Chang-Soon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.120-127
    • /
    • 2008
  • A military vehicle undergoes normal to extreme driving conditions, which consequently induce the fatigue and fracture of cabin and frame. So, it is important to estimate the fatigue life of two components at an initial design stage. In this paper, Modal Superposition Method(MSM) was applied to evaluate the durability performance of a small-sized military truck. For reliable durability analysis, a Virtual Test Lab(VTL) Model was established by correlation with experimental results. These data were extracted from actual driving test, modal test, and SPMD(Suspension Parameter Measuring Device) test. This process shows that Virtual Fatigue Analysis can be a useful approach in the development of military vehicles as well as commercial vehicles.