• Title/Summary/Keyword: Commercial Driver

Search Result 111, Processing Time 0.037 seconds

A study on the magnetic suspension system for commercial vehicle (상용차용 마그네틱 현가기구 개발에 대한 연구)

  • Ju, Hyung-Jun;Kim, Dae-Sung;Lee, Bong-Hyun;Kim, Jung-In;Kim, Chan-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.409-414
    • /
    • 2011
  • The drivers of commercial vehicle easily feel tired because of a long time driving and bad road condition. Therefore it is very important to make the driver seat comfortable. This paper introduces the suspension system of driver's seat using magnetic force. The combination of linear spring and magnetic force can make nonlinear spring which has optimal stiffness for minimal vibration transmissibility. The vibrations of driver's seat floor are measured in various road condition. And the numerical simulations and experiments are performed to define the optimal parameter of magnetic suspension system.

  • PDF

Color Matching by ICC Profile for Printer Mini-Driver (프린터 미니드라이버에서의 ICC 프로파일 기반 칼라매칭)

  • 정주영;김춘우
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.259-262
    • /
    • 2000
  • One of the major factors determining the printing quality of a color printer is the color matching that is performed inside the printer driver In this paper, the mini driver for the color printer is built using the Microsoft 98DDK. Also, the ICC profile proposed as the standard for the color management system is generated. The color matching capability of the mini driver with the ICC profile is examined and compared with that of the commercial printer driver.

  • PDF

The Analysis of Musle Fatigue for Urban Bus Driver using Electromyography (근전도를 이용한 시내버스 운전자 피로도 분석)

  • Kim, Kyong;Kim, Jae-Jun;Lee, Chan-Ki;Kim, Dong-Won;Kwon, Tae-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.584-590
    • /
    • 2009
  • Since driving include compilcated actions that require a variety of abillity and cause extrme concentration or strain, divers tend to feel tired easiy. However, divers can't recognize fatigue degree by himself and accordingly the methods to measure quantitative fatigue degree exactly is quite difficult to be secured. In this study, the most efficient driving posture was suggested based on the analysis of quantitative muscular strength and fatigue degree according to posture. The driver whom we experimented included 9 commercial bus drivers. We also analyzed quantitative legs' muscular strength according te operating each pedal, left and right then we analyzed muscular strength and muscular fatigue degree according to driving pattern while driving commercial buses. And then we suggested the most efficient driving posture.

  • PDF

PSPICE Modeling of Commercial ICs for Switch-Mode Power Supply (SMPS) Design and Simulation

  • Yi, Yun-Jae;Yu, Yun-Seop
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.1
    • /
    • pp.74-77
    • /
    • 2011
  • PSPICE modeling of a commercial LED driver IC (TOP245P) and PC817A optocoupler is proposed for the switch-mode power supply (SMPS) (applicable to LED driver) design and simulation. An analog behavioral model of the TOP245P IC including the shunt regulator, under-voltage(UV) detection, over-voltage(OV) shut-down and SR flip-flop is developed by using PSPICE. The empirical equation of PC817A current transfer ratio (CTR) is fitted from the datasheet of PC817A. Two types of SMPSs are simulated with the averaged-model and switching-model. The simulation results by the proposed PSPICE models are in good agreement with those in the data sheet and an experimental data.

Numerical Analysis on the Thermal Flow by a Thermoelectric Module within the Cabin of a Commercial Vehicle (상용차 캐빈 내의 열전모듈에 의한 열유동 수치해석)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.47-54
    • /
    • 2012
  • The steady three-dimensional numerical analysis on the thermal flow using standard k-${\varepsilon}$ turbulence model was carried out to investigate the air cooling effect of a cooler on the cabin for a commercial vehicle. Here, the heat exchanging method of this cabin cooler uses the cooling effect of a thermoelectric module. In consequence, the air system resistance of a cooler within the cabin is about 12.1 Pa as a static pressure, and then the operating point of a virtual cross-flow fan considering in this study is formed in the comparatively low flowrate region. The discharging air temperature of a cooler is about $14{\sim}15^{\circ}C$. Moreover, the air cooling temperature difference obtained under the outdoor cabin temperature of $40^{\circ}C$ shows about $7{\sim}9^{\circ}C$ in a driver resting space and about $9{\sim}14^{\circ}C$ in the front of a driver's seat including the space of a driver's foot.

Design and Implementation of Driver Circuit for AC TFEL Flat Panel Display (AC TFEL 평판표시장치의 구동회로 설계 및 구현)

  • 오건창;김명식;권용무;오명환;김덕진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.10
    • /
    • pp.27-34
    • /
    • 1993
  • In this paper, a driver system is designed and implemented to achieve 4-level gray scale CH TFEL(Thin Film ElectroLuminescent) flat panel display. To implement the driver system, commercial EL driver IC chips are used to apply high voltage pulses to the EL panel and a high voltage switching circuit is designed for the EL driver IC. A new method of reducing storage delay time of transistor is proposed to obtain a reliable switching circuit. The controller for EL driver and switching circuit is also designed. The designed driving scheme applicable to EL display with 4-level gray scale is based on the linear characteristics of brightness vs. frequency of AC TFEL. By experiment, it has been shown that the brightness of AC TEFL display with the implemented driving system is controlled by the level of gray scale.

  • PDF

Integrated Sliding-Mode Sensorless Driver with Pre-driver and Current Sensing Circuit for Accurate Speed Control of PMSM

  • Heo, Sewan;Oh, Jimin;Kim, Minki;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1154-1164
    • /
    • 2015
  • This paper proposes a fully sensorless driver for a permanent magnet synchronous motor (PMSM) integrated with a digital motor controller and an analog pre-driver, including sensing circuits and estimators. In the motor controller, a position estimator estimates the back electromotive force and rotor position using a sliding-mode observer. In the pre-driver, drivers for the power devices are designed with a level shifter and isolation technique. In addition, a current sensing circuit measures a three-phase current. All of these circuits are integrated in a single chip such that the driver achieves control of the speed with high accuracy. Using an IC fabricated using a $0.18{\mu}m$ BCDMOS process, the performance was verified experimentally. The driver showed stable operation in spite of the variation in speed and load, a similar efficiency near 1% compared to a commercial driver, a low speed error of about 0.1%, and therefore good performance for the PMSM drive.

Study of Smart Vehicle Seat for Real-time Driver Posture Monitoring (운전자 자세 실시간 모니터링이 가능한 스마트 자동차 시트 연구)

  • Shim, Kwangmin;Seo, Jung Hwan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.1
    • /
    • pp.52-61
    • /
    • 2020
  • In recent years, the increasing interest in health-care requires the industrial products to be well-designed ergonomically. In the commercial vehicle industry, several researchers have demonstrated the driver's posture has great effect on the orthopedic desease such as fatigue, back pain, scoliosis, and so on. However, the existing sensor systems developed for measuring the driver posture in real time have suffered from inaccuracy and low reliability issues. Here, we suggest our smart vehicle seat system capable of real-time driver posture monitoring by using the air bag sensor package with high sensitivity and reliability. The ergonomic numerical model which can evaluate a driver's posture has been developed on the basis of the human body segmentation method followed by simulation-based validation. Our experimental analysis of obtained pressure distribution of a vehicle seat under the different driver's postures revealed our smart vehicle system successfully achieved the driver's real-time posture data in great agreement with our numerical model.

Real-time Dangerous Driving Behavior Analysis Utilizing the Digital Tachograph and Smartphone

  • Kang, Joon-Gyu;Kim, Yoo-Won;Jun, Moon-Seog
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.37-44
    • /
    • 2015
  • In this paper, we propose the assistance method to enable safe driving through analysis of dangerous driving behavior using real-time alarm by vehicle speed, azimuth data and smartphone. For this method, smartphone is receiving driving data from digital tachograph using communication. Safe driving habit is a very important issue to commercial vehicle because that driver's long time driving than other vehicle type driver. Existing methods are very inefficient to improve immediately dangerous driving habits during driving because proceed driving behavior analysis after the vehicle operation. We propose the new safe driving assistance method that can prevent traffic accidents by real-time and improve the driver's wrong driving habits through real-time dangerous driving behavior analysis and notification the result to the driver. We have confirmed that the method in this paper will help to improve driving habits and can be applied through the proposed method implementation and simulation experiment.

Ride Analysis of A Semi-Active Suspension Seat with Sky-Hook Control (스카이-훅 제어를 이용한 반능동 현가식 운전석의 승차감 해석)

  • Kang, T.H.;Baek, W.K.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.33-39
    • /
    • 2002
  • Commercial vehicles are mostly subjected to relatively rougher ground environment than passenger vehicles. Many driver's seats of commercial vehicles have suspension system with spring and dampers. Then, impact or vibrative forces transmitted from the vehicle to the driver can be attenuated. This study deals with a ride evaluation method using sky-hook control algorithm for the suspension dampers. Vibration amplitude transmissibilities were compared between passive dampers and semi-active dampers with sky-hook control method.

  • PDF