• Title/Summary/Keyword: Comfort parameter

Search Result 60, Processing Time 0.021 seconds

Dynamics Parameter' Graphs of Passenger Planes

  • Aksoz, Ahmet;Dursun, Mahir;Saygin, Ali
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • Passenger plane flying motion graphics is very important for route, control of the flight altitude and passenger safety. For all that, it is quite useful for route away from the disruptive influences such as vibrations caused by storms or turbulence during the flight and in processes such as re-arrest of the specified route. Therefore, the response time against the adverse effects of the shape and the system is so necessary for both safety and comfort. In this study motion and route graphics were obtained under the control of an airliner C # interface with the program. In this way, graphics were obtained in solving the equations of motion in short time and design time was shortened.

A characteristic test of Auxiliary power supply for High Speed Rolling stock 350 experimental (HSR-350x) (한국형고속열차 보조전원장치 특성시험)

  • Jeong, Sang-Hun;Kim, Dong-Hwan;Lee, Byung-Song;Lee, Tae-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.185-191
    • /
    • 2006
  • Auxiliary power supply developed by domestic technology has very important function that not only effect on main power converter & inverter system, traction motor and train control system which are related to performance of train, but also influence on power supply for HVAC(Heat, Ventilation, Air-conditioning) and lighting device which are related to comfort of passengers. This paper shows characteristic test results of auxiliary power supply such as working condition and performance, which is associated with velocity of train, operating mode and surrounding equipment, through test running. Also it shows the results deduced from comparison analysis between designed data and manufactory test data as measuring in put voltage of auxiliary power supply. And, it propose a modification of design parameter for stabilizing operation and improving reliability.

  • PDF

A study on the axial force and displacement characteristics of turnout on a bridge (분기기와 교량의 상호작용 특성에 관한 연구)

  • Yang, Shin-Chu;Kim, In-Jae;Kim, Eun
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1306-1311
    • /
    • 2006
  • Most of design parameters of Railway Structures are determined by the serviceability requirements, rather than the structural safety requirements. The serviceability requirements come from Ensuring of Running Safety and Ride Comfort of Train, Reduction of Track Maintenance Work Track-Bridge Interaction should be considered in the design of railway structures. In this study, a numerical method which precisely evaluate an axial force in rail and a rail expansion and contraction when turnout exist in succession on a CWR on a ballasted or on a ballastless track of bridge is developed. From the parameter studies using the developed method, additional stress of stock rail almost 25% is generated due to stock and lead rail interaction, even embankment not bridge. In case of ballasted track, additional stress of stock rail on bridge is very greater than on embankment, and therefore require detailed review in bridge design with turnout. Stresses of turnout rails on bridge are very sensitive according to the installed positions. In case of ballastless track, Stresses of turnout rails are similar as those of normal track

  • PDF

A characteristic test of Auxiliary power supply for High Speed Rolling stock 350 experimental (HSR-350x) (한국형고속열차 보조전원장치 특성시험)

  • Kim, Dong-Hwan;Lee, Byung-Song;Lee, Tae-Hyung;Jeong, Sang-Hun
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.84-87
    • /
    • 2007
  • Auxiliary power supply developed by domestic technology has very important function that not only effect on main power converter & inverter system, traction motor and train control system which are related to performance of train, but also influence on power supply for HVAC(Heat, Ventilation, Air-conditioning) and lighting device which are related to comfort of passengers. This paper shows characteristic test results of auxiliary power supply such as working condition and performance, which is associated with velocity of train, operating mode and surrounding equipment, through test running. And, it propose a modification of design parameter for stabilizing operation and improving reliability.

An Analysis of Passenger Discomfort According to Vertical Vibration and Pitching (수직 진동과 pitching에 의한 탑승자의 승차감 변화에 대한 해석)

  • Ryu, K.C.;Kim, Y.E.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.100-110
    • /
    • 1995
  • The human subject perception response according to vertical vibration and pitching was analyzed with a five degree of freedom model. The vehicle dynamic system with the delayed colored noise excitation and the passenger perception response was arranged as an integrated viration system and could be analyzed simultaneously for seven different combination of vehicle suspension. ISO2631 and BS6841 was adapted for analyzing the passenger perception reponse. Simulation results shows that passenger feel relatively less discomfort due to pitching compared to vertical vibration and road type was not necessary to be considered as a design parameter in view of comfort analysis.

  • PDF

Optimization Design and Development of the Proportional Pressure Control Valve Analysis Model of Active Body Control (차량 자세제어 시스템의 비례압력제어밸브 해석모델 개발 및 최적화 설계)

  • Kim, Dongmyung;Jang, Joosup;Son, Taekwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.127-134
    • /
    • 2014
  • Active body control system is an important system for determining the driving stability and ride comfort of the vehicle. Active body control system is composed of a cylinder unit power supply unit, and control valve unit. Control valve is a proportional pressure control valve, the dynamic characteristics of the valve affects the performance of the active body control system. We have developed an analytical model, we analyzed the design parameters of the proportional pressure control valve. Further, by knowing the design parameters effect on the system and to optimize the design parameters, and improved performance of the dynamic properties.

Responsive Pneumatic Facade with Adaptive Openings for Natural Ventilation (창호의 개폐조절을 기반으로 한 리스펀시브 뉴메틱 파사드)

  • Lee, Jisun;Lee, Hyunsoo
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.33 no.12
    • /
    • pp.29-39
    • /
    • 2017
  • The building skins are important architectural elements in both functional and aesthetical aspects. This study focuses on developing a responsive facade with autonomous opening and closing behaviors in accordance with environmental conditions and user requirements for natural ventilation for the office building. The pneumatic ETFE panels are applied as the skin materials taking advantage of the efficiency of the inflatable skin of lightness, architectural performance and sustainable material properties. The biomimetic design methodology is taken for its innovative and visionary concept for the facade design. The interpretation of the building facade in analogy to natural organisms delivers functional and aesthetic characters. By exploring the structural movements of the plant pores, the facade control is developed to be autonomous by the parameter values. The facade opening and closing configurations are derived through parametric modeling and visualization programming. Through the application of this study, expected results are to improve user comfort and energy efficiency.

Electric Therapy System Based on Discontinuous Conduction Mode Boost Circuit

  • Chen, Wenhui;Lee, Hyesoo;Jung, Heokyung
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.4
    • /
    • pp.245-253
    • /
    • 2020
  • The human body and nervous system transmit information through electric charges. After the electric charge transmits information to the brain, we can feel pain, numbness, comfort, and other feelings. Electric therapy is currently used widely in clinical practice because the field of examination is more representative of electrocardiogram, and in the field of treatment is more representative of electrotherapy. In this study, we design a system for neurophysiological therapy and conduct parameter calculation and model selection for the components of the system. The system is based on a discontinuous conduction mode (DCM) boost circuit, and controlled and regulated by a single-chip microcomputer. The system does not only have a low cost but also fully considers the safety of use, convenience of the human-computer interface, adjustment sensitivity, and waveform diversity in the design. In future, it will have strong implications in the field of electrotherapy.

Assessment of Indoor Air Quality in Commercial Office Buildings (업무용 빌딩 내 사무실의 실내공기질 평가)

  • Jeong, Jee Yeon;Lee, Byung Kyu;Phee, Young Gyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.1
    • /
    • pp.31-42
    • /
    • 2007
  • Recently, concerns regarding indoor air quality in offices have continued to increase. Thirty offices in five metropolitan commercial buildings were surveyed from February to April 2004. Sampling was performed during normal business hours. Thermal comfort factors such as temperature and relative humidity, carbon dioxide ($CO_2$), carbon monoxide (CO), formaldehyde (HCHO), respirable dust, $PM_{10}$ were sampled and analyzed to determine the mean, standard deviation, range, and correlation for each of those parameters. The data was then compared to office as standard of Ministry of Labor, and guideline applicable to the indoor environment. The results represented that the temperature was slightly higher than the standard of American Society of Refrigerating and Air-Conditioning Engineers (ASHRAE), the relative humidity was lower that the standard of ASHRAE. The range of the 8-TWA concentration of $CO_2$ was 639 ~ 786 ppm, but 33.3% of the total thirty offices exceeded the 1000 ppm as ceiling concentration. The concentration of CO was less than 3 ppm, which was similar to that of offices in Japanese. The mean concentration of formaldehyde was 0.032 ppm, and only 2 % of total samples (193) exceeded the 0.1 ppm, standard of formaldehyde in office air. The concentration of respirable dust and $PM_{10}$ was not exceeded the standard of those parameters, $150{\mu}g/m^3$. The concentration of those parameters in the office air was statistically correlated.

A Study on the Optimization of Suspension Characteristics for Improving Running Safety of Railway Vehicle (철도차량 주행안전성 향상을 위한 현가장치 최적화 연구)

  • Lee, Young-Yeob;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.909-914
    • /
    • 2009
  • A suspension is the most prior apparatus to decide vehicle's running safety and ride comfort, also the suspension stiffness is the most important parameter for the designing of the vehicle. Providing the strong stiffness with the primary suspension in order to improve the running safety with high speed, but it causes a problem with a curve running performance of a railway vehicle. Therefore, many studies deal with the optimal value of suspension stiffness. In this paper, we aim to optimize the suspension system to improve running safety by varying stiffness values of railway vehicle suspension. We have proceeded an analysis by design variables which are position, length, width, stiffness and damping coefficients of primary and secondary suspension to optimize the suspension characteristics. As a result of the optimization, we verified that the derailment coefficients of inside and outside of wheel are decreased in comparison with initial model.