• Title/Summary/Keyword: Comet-assay

Search Result 329, Processing Time 0.03 seconds

Protective Effect of Schizonepeta tenuifolia Briquet Extracts on Oxidative DNA Damage in Human Leucocytes and on Hydrogen Peroxide-induced Cytotoxicity in PC12 Cells

  • Yoon, Mi-Young;Lee, Hyun-Jin;Lee, Bo-Bae;Lee, Sang-Myeon;Kim, Ju-Young;Kim, Yong-Seong;Park, Eun-Ju;Park, Hae-Ryong
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.858-862
    • /
    • 2007
  • The present study was conducted to examine the antioxidant activities and neuroprotective effects of methanolic extracts from Schizonepeta tenuifolia Briquet (STE). STE ($100\;{\mu}g/mL$) showed $43.33\;{\mu}M$ of total phenolic content, 64.43% of radical scavenging activity, and 0.157 of reducing power. In addition, the effect of STE on $H_2O_2$-induced DNA damage in human leucocytes was evaluated by the comet assay, where STE was a dose dependent inhibitor of DNA damage induced by $200{\mu}M$ of $H_2O_2$. The protective effect of STE against $H_2O_2$-induced oxidative damage on PC12 cells was investigated by an 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) reduction assay and lactate dehydrogenase (LDH) release assays. After 2 hr of cell exposure to $H_2O_2\;(500\;{\mu}M)$, a marked reduction in cell survival was observed. However, this reduction was significantly prevented by $1-50\;{\mu}g/mL$ of STE. Therefore, these results suggest that STE could be a new antioxidant candidate against neuronal diseases.

Bracken-fern Extracts Induce Cell Cycle Arrest and Apoptosis in Certain Cancer Cell Lines

  • Roudsari, Motahhareh Tourchi;Bahrami, Ahmad Reza;Dehghani, Hesam;Iranshahi, Mehrdad;Matin, Maryam Moghadam;Mahmoudi, Mahmud
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6047-6053
    • /
    • 2012
  • Bracken fern [Pteridium aquilinem (L.) kuhn (Dennstaedtiaceae)] is one of the most common species on the planet. It has been consumed by humans and animals for centuries. Use by some human groups is because they believe bracken fern is good for health as plant medicine. However, it is also one of the few known plants that can cause tumors in farm animals. Many interested groups have focused their attention on bracken fern because of these interesting features. In order to evaluate the biological effects of exposure to this plant in cellular level, human cancer cell lines were treated with the fern dichloromethane extracts and the genotoxic and cytotoxic effects were studied. Anti-proliferative/cytotoxic effects were evaluated by cell count, MTT assay and flow cytometry methods with three different cancer cell lines, TCC, NTERA2, and MCF-7, and two normal cells, HDF1 and HFF3. Pro-apoptotic effects of the extracts were determined by DAPI staining and comet assay, on TCC cancer cells compared to the normal control cell lines. Cellular morphology was examined by light microscopy. Our present study showed that the extract caused DNA damage and apoptosis at high concentrations ($200{\mu}g/mL$) and also it may induce cell cycle arrest (G2/M phase) at mild concentrations (50 and $30{\mu}g/mL$) depending on the cell type and tumor origin. These results indicate that bracken fern extract is a potent source of anticancer compounds that could be utilized pharmaceutically.

The Antioxidant Effect of Lactobacillus gasseri KACC 91155 Isolated from Korean Infant in Jurkat T Cells (유아의 분변에서 분리한 Lactobacillus gasseri KACC 91155의 Jurkat T Cells에서 항산화 효과)

  • Jeong Seok-Geun;Kim Hyun-Soo;Ham Jun-Sang;Chae Hyun-Seok;Lee Jong-Moon;Ahn Chong-Nam
    • Food Science of Animal Resources
    • /
    • v.25 no.4
    • /
    • pp.494-499
    • /
    • 2005
  • In the present study, we investigate the protective effect of antioxidant strain Lactobacillus gasseri KACC 91155, isolated from Korean infant feces(Obstetrics & Gynecology, Suwon, Korea) on the oxidative stress damage on the Jurkat T cells. To estimate the extent of cellular lipid peroxidation inhibition, MDA(malondialdehyde) production was measured Furthermore, cell viability was detected by the MTT assay, DNA damage was tested by the comet assay. Cell grown in medium with or without L gasseri lysate$(100\~1,000{\mu}g)$ were treated with $H_2O_2,\;Fe^{2+}$ as an oxidative stimulus. From the result obtained, the supplementation of Jurkat T cells with L. gasseri lysate significantly decreased in MDA production (1,250 vs. 835 nmol/mg protein), and DNA damage(31.6 vs. 22.6 tail moment). Also L gasseri increase cell viability against oxidative damage. We concluded that the L. gasseri KACC 91155 showed a protective effect against oxidative stress.

Anti-oxidative Effect of Chungpyesagan-tang in LPS Induced RAW 264.7 Cells (LPS로 유도된 RAW 264.7 세포에서 청폐사간탕(淸肺瀉肝湯)의 항산화 효과)

  • Jeon, Bo-Hee;Kim, Tae-Jun;Kim, Hee-Taek;Kim, Yong-Min
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.34 no.4
    • /
    • pp.24-36
    • /
    • 2021
  • Objectives : This study was conducted to confirm the anti-oxidative effect of Chungpyesagan-tang(CPSGT) extract. Methods : In this study, MTT assay was performed to confirm cell viability, and DPPH and ABTS were performed to confirm radical scavenging ability. The ROS scavenging ability and the protective effect against DNA damage were confirmed by 2,7-dichlorofluorescin diacetate(DCF-DA) and 4',6-diamidino-2-phenylindole(DAPI) staining and comet assay. mRNA expression of Heme oxygenase-1(HO-1) was measured by real-time PCR, and expression of HO-1 and Kelch-like ECH-associated protein 1(Keap1) proteins was measured by western blot. Results : CPSGT was not cytotoxic at 50-400㎍/㎖. The radical scavenging activity was increased, and the ROS scavenging activity and the protective effect against DNA damage were increased compared to the LPS-treated group. The mRNA expression and protein expression of HO-1 were increased in a concentration-dependent manner. The protein expression level of Keap1 was decreased in a concentration-dependent manner. Conclusion : This suggests that CPSGT has an antioxidant effect and can be used as a potential material for skin diseases.

Antioxidative and Probiotic Properties of Lactobacillus gasseri NLRI-312 Isolated from Korean Infant Feces

  • Kim, H.S.;Jeong, S.G.;Ham, J.S.;Chae, H.S.;Lee, J.M.;Ahn, C.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1335-1341
    • /
    • 2006
  • We selected a Lactobacillus spp. from Korean healthy infant feces based upon their antioxidant activity. This strain was identified as Lactobacillus gasseri by 16S rDNA sequencing, and named Lactobacillus gasseri NLRI-312. In the present study, we investigate the protective effect of this strain on the $H_2O_2$ induced damage to cellular membrane lipid and DNA in Jurkat cells. To estimate the extent of cellular lipid peroxidation inhibition, MDA (malondialdehyde) was measured, and DNA damage was tested by the comet assay. We also examined probiotic properties including tolerance to acid and bile, antibiotic resistance. From the results obtained, the supplementation of Jurkat cells with NLRI-312 decreased in DNA damage, while no effect was shown on MDA decrease. In probiotic properties, this strain was resistance to both acid and bile, showed considerably higher survival when incubated in pH 2 or 1% bile salts (w/v). We concluded that the NLRI-312 could be used as potential probiotic bacteria, with the effect of reducing DNA damage induced by $H_2O_2$.

Toxicoproteomic Analysis of Differentially Expressed Proteins in Rat Liver by DEHP

  • Son, Bu-Soon;Seong, Ah-Reum;Park, Seul-Ki;Kim, Wan-Jong;Ryu, Jae-Chun;Lee, Mi-Young
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.4
    • /
    • pp.299-305
    • /
    • 2007
  • The endocrine disrupting chemical, di (2-ethylhexyl) phthalate (DEHP) is a plasticizer used in polyvinyl chloride products ubiquitous in our daily lives. DEHP has potentially adverse effects on the liver, kidney, lung, heart, reproductive organs and endocrine systems. Many toxicological data on the DEHP toxicity have been stated, but complete protein profiles have not yet been reported. In this study, DEHP-induced oxidative DNA damage in rat lymphocyte was evaluated by Comet assay (single-cell gel electrophoresis) for the first time. Moreover, DEHP-induced protein profile alterations were examined in rat liver by using toxicoproteomic tools. 34 protein spots in the liver were identified to be significantly deregulated by DEHP on the 2-dimensional gel. Among them, 20 spots were up-regulated and 14 spots down-regulated by DEHP.

The Effect of Carnosine Extracted from Eels Anguilla japonica on Oxidative DNA Damage Induced by Hydrogen Peroxide and the DNA Repair Capacity of Human Leukocytes (뱀장어(Anguilla japonica) 추출 Carnosine이 과산화수소로 유도된 인체 백혈구의 DNA 손상과 Repair에 미치는 효과)

  • Song, Ho-Su
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.5
    • /
    • pp.520-526
    • /
    • 2017
  • Carnosine was recently reported to protect against the DNA damage induced by oxidative stress. In this study, we investigated the protective effect of eel Anguilla japonica carnosine extracts prepared using different methods (heat treatment extracts, HTEs; ion exchange chromatography, IEC; ultrafiltration permeation, UFP) on leukocyte DNA damage using the comet assay. Human leukocytes were incubated with extracts of eel carnosine at concentrations (of 10, 50, $100{\mu}g/mL$), and then subjected to an oxidative stimulus [$200{\mu}M$ hydrogen peroxide ($H_2O_2$)]. Pretreatment of the cells for 30 min with carnosine significantly reduced the genotoxicity of $H_2O_2$ measured as DNA strand breaks. The protective effects of the three types of extract (HTE, IEC, and UFP) increased with concentration. At the highest concentration (100 g/mL). there were no statistical differences in oxidative damage between each extract treatment and PBS-treated negative controls. When leukocytes were incubated with carnosine for 30 min after exposure to $H_2O_2$. the protective ability of each extract changed. Therefore, eel carnosine inhibits the $H_2O_2$ induced damage to cellular DNA in human leukocytes, supporting the protective effect of this compound against oxidative damage.

Evaluation of Cyto-, Geno- and Ecotoxicity of Bio-oil from the Fast Pyrolysis of Rediata Pine (Rediata pine의 fast pyrolysis 공정에서 얻어진 bio-oil의 세포독성, 유전독성 및 생태독성 평가)

  • Park, Sun-Young;Kim, Joo-Sik;Park, Young-Kwon;Choi, Jin-Hee
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.3
    • /
    • pp.187-194
    • /
    • 2008
  • 국내에서 목질계 바이오매스는 유망한 재생가능한 자원이다. Fast pyrolysis을 통한 radiata pine 톱밥의 bio-oil의 전환은 벤치스케일의 유동층 반응기을 이용하였다. 이 실험에서 얻어진 bio-oil은 주로 산, 페놀, 알킬페놀 등을 포함하고 있었고. 세포생존율실험, comet assay, 물벼룩 급성유영저해실험을 이용하여 각각 세포독성, 유전독성 및 생태독성을 평가하였다. Bio-oil의 액상부분은 타르 부분보다 세포독성과 유전독성이 더 높게 나타났고, 반면 타르부분은 액상부분에 비해 생태독성이 높게 나타났다. 본 연구에서 얻어진 결과를 통해 pyrolysis 생성물에 대한 다양한 독성영향을 확인할 수 있었으나, 보다 다양한 독성 지표의 적용이 필요할 것으로 보인다.

감마선조사 생약재(H-113)의 산화적 생체손상 억제효과 안정성 평가

  • Oh, Heon;Jung, Woo-Hee;Jung, Il-Yoon;Cheon, Eui-Hyun;Cho, Sung-Ki
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.04a
    • /
    • pp.103.1-103
    • /
    • 2003
  • 건조 생약재의 위생화 수단으로 방사선 조사 기술의 적용 가능성을 검토하기 위하여 감마선 조사 생약의 효능 변화유무를 평가하고자 하였다. 본 연구에서는 감마선 조사 시료와 비조사 시료가 생체의 산화적 손상을 억제하는 효과를 비교하기 위하여 방사선에 의한 산화적 손상에 대한 효과를 측정하였다. 감마선 조사(10 kGy) 생약재(H-113) 및 비조사 생약재(H-113) 추출물을 처리하여 배양한 사람 림프구에 방사선을 조사한 후, 단세포전기영동(single-cell gel electrophoresis, SCGE; comet assay)을 수행하여 DNA 상해 경감정도를 관찰하였다. 또한 방사선 조사 및 비조사 생약재(H-113) 추출물을 투여한 생쥐에 8 Gy의 감마선을 조사한 후, 간에서 지질과산화 정도를 비교·관찰하였다. 한편 DPPH 라디칼과 hydroxyl 라디칼 소거효과를 시험관내에서 상호 비교하였다. 감마선 조사 생약재(H-113)는 단세포전기영동, 지질과산화, DPPH 및 hydroxyl 라디칼 소거시험에서 비조사 생약재 (H-113)와 유사한 효과를 나타내어 효능 차이가 인정되지 않았다. 이는 생약재의 여러 가지 고유 효능 중 일부의 안정성을 확인한 것으로 생각되며, 이러한 결과를 바탕으로 감마선 조사 생약재의 고유 효능의 안정성에 관한 체계적인 연구결과를 얻는다면 생약재의 위생화 수단으로 감마선 조사 기술의 이용이 실용화될 수 있을 것으로 사료된다.

  • PDF

Effect of long term treatment of aqueous extract of Enicostemma littorale in Type 2 diabetic patients

  • Mansuri, Mustakim M;Goyal, Bhoomika R;Upadhyay, Umesh M;Sheth, Jayesh;Goyal, Ramesh K
    • Advances in Traditional Medicine
    • /
    • v.9 no.1
    • /
    • pp.39-48
    • /
    • 2009
  • We have evaluated the effect of long term treatment of Enicostemma littorale (E. littorale) in type 2 diabetic patients taking pills of aqueous extract of E. littorale regularly as a complimentary medicine for at least 9 months. The effects of E. littorale on glycemic control, lipid profile, cardiac function and DNA damage in these patients were compared with those who had not been regular in taking E. littorale but regular in taking other conventional anti-diabetics. Our data suggest that, E. littorale can maintain normal blood glucose, serum insulin, serum triglycerides levels of type 2 diabetic patients if taken regularly. E. littorale also improves insulin sensitivity, and normalize disturbed lipogram and elevated creatinine levels, thereby produces beneficial effect in preventing cardiovascular complications and may preserve the kidney function. The finding that E. littorale also prevents DNA damage suggest a long term effect in diabetic patients. E. littorale thus can be considered as safe supplementary therapy for a long term and effective management of type 2 diabetic patients.