• Title/Summary/Keyword: Combustion system

Search Result 2,152, Processing Time 0.024 seconds

Analysis on the Characteristics of RICEM for Researching Combustion Characteristics of Linear Hydrogen Power System (리니어 수소동력시스템의 연소연구용 급속흡입압축기의 특성 해석)

  • Lee, J.H.;Kim, K.M.;Jeong, D.Y.;Lee, Jong-T.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.1
    • /
    • pp.66-73
    • /
    • 2005
  • Hydrogen linear power system is estimated as the next generation power system which can obtain a performance as same as fuel cell. In order to develop Hydrogen combustion power system with high thermal efficiency, it is very important to understand the basic characteristics of hydrogen combustion and establish combustion stabilization technique of its system. In this study, RICEM(Rapid Intake Compression Expansion Machine) for researching of hydrogen combustion linear power system was manufactured and evaluated, and the basic characteristics of linear RICEM were analyzed.

Development of Low Temperature Diesel Combustion Engine for Construction Equipments (건설기계용 저온연소 엔진시스템 개발)

  • Shim, Euijoon;Kim, Duksang;Lee, Dongin;Park, Yonghee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.83-88
    • /
    • 2014
  • LTC(Low Temperature Combustion) technology has been studied to see feasibility of the combustion technology applied to heavy-duty engines on the laboratory scale. This study succeeded to develop a demo engine including realized low temperature combustion under partial load conditions. To find the best feasible LTC strategy, various LTC combustion methods such as PPCI, MK and highly diluted mixing controlled LTC were conducted on 6.0L heavy duty diesel engine. Air management system was re-designed to make these combustion scheme stable and the re-designed air system helped expand LTC operating range. This study finally revealed plausible LTC concept to maximize benefit of the alternative combustion technology while overcoming handicaps of the LTC strategy.

The Pollutant Emission Characteristics of Lean-Rich Combustion System with Exhaust Gas Recirculation (배기가스 재순환을 적용한 희박-과농 연소시스템의 공해물질 배출특성 연구)

  • Oh, Wheesung;Lee, Chang-Eon;Yu, Byeonghun
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.2
    • /
    • pp.28-35
    • /
    • 2015
  • In this study, the CH4/air lean-rich combustion system with exhaust gas recirculation (EGR) was investigated to explore the potential for lowering pollutant emissions. To achieve this purpose, experiments of lean-rich combustion system with EGR were conducted to measure the changes in the characteristics of the pollutant emission and flame shape with various equivalence ratios and EGR rates. Here, this study was applied to the fuel distribution ratio of 3:1 for the formation of the lean and rich flames. Additionally, the results were compared with $CH_4$/air lean premixed combustion system. The results show that flame shape of lean-rich combustion system was determined by lean and rich equivalence ratios (${\Phi}_L$ and ${\Phi}_R$) and stratified flame was formed with increasing ${\Phi}_R$. According to the pollutant emission characteristics based on experimental results, the NOx and CO emission index (EINOx and EICO) decreased with increasing EGR rate. Especially, in the range needed to form a stable flame, the reduction rates of EINOx and EICO were approximately 47% and 48% for an EGR rate of 25%, global equivalence ratio of 0.85 and ${\Phi}_L$ of 0.80 compared with lean premixed combustion system (${\Phi}$ = 0.78).

A Study on the Spray and Combustion Characteristics of Direct-injection LPG (직접분사식 LPG의 분무 및 연소 특성에 관한 연구)

  • Hwang, Seong-Ill;Chung, Sung-Sik;Yeom, Jeong-Kuk
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.40-48
    • /
    • 2015
  • As advantages of LPG-DI engine, LPG is directly injected into combustion chamber during compression stroke to reduce compression temperature, prevent knock and spontaneous combustion, and adjust engine output using the amount of directly injected fuel, thereby reducing pumping loss caused by throttle valve. Stratified charge can be supplied nearby spark plugs to allow for overall lean combustion, which improves thermal efficiency and can cope with problems regarding emission regulations. In addition, it is characterized by free designing of intake manifold. Despite the fact that LPG-DI has many advantages as described above, there is lack of detailed investigation and study on spray characteristics, combustion flame characteristics, and ignition probability. In this study, a visualization experiment system that consists of visualization combustion chamber, air supply control system, emission control system, LPG fuel supply system, electronic control system and image data acquisition system was designed and manufactured. For supply of stratified charge in the combustion chamber, alignment of injector and spark plugs was made linear.

Performance Comparison of Molten Carbonate Fuel Cell Hybrid Systems Minimizing Carbon Dioxide Emissions (이산화탄소 배출을 최소화하는 용융탄산염 연료전지 하이브리드 시스템들의 성능 비교)

  • AHN, JI HO;YOON, SUK YOUNG;KIM, TONG SEOP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.30-39
    • /
    • 2017
  • Interests in fuel cell based power generation systems are on the steady rise owing to various advantages such as high efficiency, ultra low emission, and potential to achieve a very high efficiency by a synergistic combination with conventional heat engines. In this study, the performance of a hybrid system which combined a molten carbonate fuel cell (MCFC) and an indirectly fired micro gas turbine adopting carbon dioxide capture technologies was predicted. Commercialized 2.5 MW class MCFC system was used as the based system so that the result of this study could reflect practicality. Three types of ambient pressure hybrid systems were devised: one adopting post-combustion capture and two adopting oxy-combustion capture. One of the oxy-combustion based system is configured as a semi-closed type, while the other is an open cycle type. The post-combustion based system exhibited higher net power output and efficiency than the oxy-combustion based systems. However, the semi-closed system using oxy-combustion has the advantage of capturing almost all carbon dioxide.

Development of a Software System for Measurements of Combustion Dynamics of a Dry Low NOx Gas Turbine (건식 저 NOx 가스터빈의 연소동압 측정용 소프트웨어 시스템 개발)

  • Jang, Wook;Seo, Seok-Bin;Jung, Jae-Hwa;An, Dal-Hong;Kim, Jong-Jin;Cha, Dong-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.931-938
    • /
    • 2002
  • Combustion dynamics of a dry low NOx gas turbine have been measured by utilizing a dynamic pressure measurement system. The software part of the measurement system, implemented with a commercial general-purpose DASYLab version 5.6 code, basically acquires combustion dynamics signals, performs the FFT analysis, and displays the results. The gas turbine often experiences momentary combustion instability, especially when its combustion mode changes. It is found that the measurement system developed in the study may outperform the other commercial dynamic pressure measurement system. The developed system currently serves to monitor the combustion dynamics of the gas turbine.

Temperature Measurement by Radiation Wavelength of High Temperature CO2 gas (고온 CO2 가스의 복사 파장을 이용한 부분별 온도 측정)

  • Maeng, Saeromg;Yoo, Miyeon;Kim, Saewon;Lee, Changyeop
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.315-316
    • /
    • 2014
  • Combustion gases emit various radiation signals by chemical reaction and excited molecules in combustion system. Since temperature measurement of combustion system is very difficult, non-contact temperature measuring methods are being researched. In this paper, we propose optical system of simple structure and implement technique for measuring temperature partially in furnace using radiation wavelength signals of high temperature $CO_2$ gas generated during combustion.

  • PDF

The Study of Waste Treatment using Advanced Oxygen Enriched Combustion System (산소부하 연소 시스템을 이용한 폐기물 열처리에 관한 연구)

  • Lee, Keon-Joo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.231-239
    • /
    • 2003
  • In this study, the waste of landfill was treated using advanced enriched oxygen combustion system. The oxygen concentration of this study was 21%, 25%, 30% and 40% and the operating capacity was 200 g/min and the residence time was 10 minutes. As increased the oxygen concentration of combustion air. temperature of the incinerator was increased and the temperature was increased rapidly when the oxygen concentration was 30%. As increased the oxygen concentration, the NOx (ppm) of flue gas increase d for thermal NOx, however the CO (ppm) of flue gas decreased according to the increase of combustion efficiency . The optimum operation condition of incineration was obtained when the oxygen concentration is 30%${\sim}$40%. The unburned carbon of ash decreased from 10% to 4% when the oxygen concentration was increased from 21% to 30%, therefore the high combustion efficiency can be obtained if used the oxygen enriched combustion system.

  • PDF

Catalytic Combustion System Stability:Active Control with High Temperature Heat Exchanger (촉매연소 시스템 안정화 : 고온용 열교환기를 이용한 능동제어)

  • Yu, Sang-Phil;Song, Kwang-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.65-69
    • /
    • 2002
  • Catalytic combustion known as one of the traditional oxidation methods of VOC gas is restricted to its applicable fields because of its reaction characteristics. But recently innovative improvement of catalytic endurance makes its applicable range broader from MEMs to industrial power generation. Therefore, control technologies based on the catalytic combustion characteristics are researched and developed dynamically. Especially, the stable control of catalytic combustion is an essential factor in a view of maximizing its efficiency. In this research, the fuel equivalence ratio and the preheating temperature of mixture gas is controlled by catalytic combustion system enhanced in heat transfer with high temperature heat exchanger. As a result, the combustion characteristics of system was investigated, and both passive and active control type were compared and analyzed.

  • PDF

A Combustion Instability Analysis of a Gas Turbine Combustor Having Closed Acoustic Boundaries at Both Ends (폐음향 경계조건을 갖는 가스터빈 연소기의 연소불안정 해석)

  • Cha, Dong-Jin;Shin, Dong-Myung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.3
    • /
    • pp.156-164
    • /
    • 2010
  • Combustion instability is a major issue in design of gas turbine combustors for efficient operation with low emissions. Combustion instability is induced by the interaction of the unsteady heat release of the combustion process and the change in the acoustic pressure in the combustion chamber. In an effort to develop a technique to predict self-excited combustion instability of gas turbine combustors, a new stability analysis method based on the transfer matrix method is developed. The method views the combustion system as a one-dimensional acoustic system with a side branch and describes the heat source as the input to the system. This approach makes it possible to use not only the advantages of the transfer matrix method but also well established classic control theories. The approach is applied to a gas turbine combustion system, which shows the validity and effectiveness of the approach.