• Title/Summary/Keyword: Combustion system

Search Result 2,152, Processing Time 0.023 seconds

A Study on Combustion Process of Biodiesel Fuel using Swirl Groove Piston (Swirl Groove Piston에 의한 바이오 디젤연료의 연소과정에 관한 연구)

  • Bang, Joong-Cheol;Kim, Sung-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.105-113
    • /
    • 2009
  • The performance of a direct-injection type diesel engine often depends on the strength of swirl or squish, shape of combustion chamber, the number of nozzle holes, etc. This is of course because the combustion in the cylinder was affected by the mixture formation process. In this paper, combustion process of biodiesel fuel was studied by employing the piston which has several grooves with inclined plane on the piston crown to generate swirl during the compression stroke in the cylinder in order to improve the atomization of high viscosity fuel such as biodiesel fuel and toroidal type piston generally used in high speed diesel engine. To take a photograph of flame, single cylinder, four stroke diesel engine was remodeled into two stroke visible engine and high speed video camera was used. The results obtained are summarized as follows; (1) In the case of toroidal piston, when biodiesel fuel was supplied to plunger type injection system which has very low injection pressure as compared with common-rail injection system, the flame propagation speed was slowed and the maximum combustion pressure became lower. These phenomena became further aggravated as the fuel viscosity gets higher. (2) In the case of swirl groove piston, early stage of combustion such as rapid ignition timing and flame propagation was activated by intensifying the air flow in the cylinder. (3) Combustion process of biodiesel fuel was improved by the reason mentioned in paragraph (2) above. Consequently, the swirl grooves would also function to improve the combustion of high viscosity fuel.

Estimation method of heat flux at tube bank exposed to high temperature flue gas in large scale coal fired boilers (보일러 내부 고온가스에 노출된 전열 튜브에서의 열유속 평가 방법)

  • Jung, Jae-Jin;Song, Jung-Il
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.259-264
    • /
    • 2009
  • Most of the fossil power plants firing lower grade coals are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. The poor combustion conditions are directly related to the gas flow deviation in upper furnace and convection tube-bank but a less reported issue related to in large-scale oppose wall fired boilers. In order to develop a on-line combustion monitoring system and suggest an alternative heat flux estimation method at tube bank, which is very useful information for boiler design tool and blower optimizing system, field test was conducted at operating power boiler. During the field test the exhaust gases' temperature and tube metal temperature were monitored by using a spatially distributed sensors grid which located in the boiler's high temperature vestibule region. At these locations. the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. Test results showed that the flue gas monitoring method is more proper than metal temperature distribution monitoring for real time combustion monitoring because tube metal temp. distribution monitoring method is related to so many variables such as flue gas, internal flow unbalance, spray etc., Heat flux estimation at the tube bank with flue gas temp. and metal temp. data can be alternative method when tube drilling type sensor can't able to use.

  • PDF

Eco-machinery Engineering Technology for Reducing NOx Emission (질소산화물과 관련한 환경기계기술)

  • Ahn, Kook-Young;Kim, Han-Seok;Cha, Min-Seok;Lee, Jin-Wook
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.301-310
    • /
    • 2003
  • Eco-Machinery engineering technologies in KIMM for reducing NOx emission were introduced. Combustion technologies such as reburning and fuel staged or air staged combustion have been applied to reduce NOx emission in the field of boiler furnaces. Lean premixed combustion method have been studied in gas turbine combustor. Hybrid system with plasma and SCR being considered as prospective method of De-NOx has been developed. Also, low NOx technologies including common rail system, EGR and DPF in diesel engine have been investigated.

  • PDF

A Study on Behavior of Steel Surface Oxidation with Characteristics of the Combustion (연소 특성에 따른 강판 표면 산화거동에 관한 연구)

  • KIM, SEULGI;KANG, KIJOONG;LEE, KEEMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.392-400
    • /
    • 2017
  • An experimental study was conducted to investigate behavior of steel surface oxidation with characteristics of the combustion. The excess entalphy combustion in porous media system was applied to implement the direct radiation heating system. The surface oxidation thickness (SOT) of fuel-lean was thicker than the SOT of fuel-rich. Also, the SOT was increased by increasing residence time. Detailed explanations were given by SEM and EDS analysis.

Analysis of Combustion Characteristics of Bio Diesel Fuel in a DI Diesel Engine Using PXI and LabVIEW (PXI와 LabVIEW를 이용한 직접 분사식 디젤기관의 바이오 디젤유 연소특성 분석)

  • Jung, S.H.;Kim, M.S.;Jang, S.H.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.8 no.2
    • /
    • pp.18-23
    • /
    • 2004
  • Recently many researchers have been studying the development of alternative energy due to serious environmental pollution and drying up fossil energy. Among various alternative fuels, authors investigated the physical and combustion characteristics of the bio diesel fuel(BDF) which was made from the wasted vegetable oil. In this study, PXI and LabVIEW, which is a novel measuring instrument and online analysis, was used to investigate the combustion characteristics of BDF in a DI diesel engine.

  • PDF

Combustion Experiment Measurement Uncertainty for Hybrid Rocket Motor (하이브리드 로켓 모터에 대한 연소 실험 측정 불확도)

  • Kim, Soo-Jong;Moon, Hee-Jang;Kim, Jin-Kon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • In this study, the measurement uncertainty of combustion experimental system and experimental parameters for hybrid rocket were evaluated by B type evaluation method. The measurement uncertainty of all experimental parameters was lower than 3%. The highest value of expanded uncertainty was characteristic velocity efficiency with 2.83% and the expanded uncertainty of regression rate which is the design and performance parameter was indicated to 0.03%. These results shown that the reliability of hybrid combustion system was located within allowed limits.

Analysis of Spray Characteristics in w-shaped Diesel Engine Combustion Chamber with Impingement Lands (충돌부를 갖는 w-형 디젤엔진 연소실의 분무특성분석)

  • Park, K.;Park, D.S.;Kim, M.H.
    • Journal of ILASS-Korea
    • /
    • v.1 no.4
    • /
    • pp.40-45
    • /
    • 1996
  • This Paper addresses to spray characteristics in w-shaped diesel engine combustion chamber which has impingement parts for 4 sprays injected from an injector. The two-dimensional shapes have been chosen to avoid the difficulties for analysing the spray dynamics in the real chamber. The simple shapes are reproduced with same geometries in vertical or horizontal sections through the impingement lands. The spray developments are visualized with a high speed drum camera and shadowgraphy optical system, and the droplet sizes are measured by Malvern system. The detailed discussions m made for the two different combustion chamber shapes, which are new w-shape using spray wall impaction and general w-shape. The results show that the spray characteristics of the new shape are superior to those of the general w-shape.

  • PDF

Analysis of New DI Diesel Combustion Chamber System using New Spray Wall Impaction Model (새로운 충돌모델을 이용한 신형식 디젤연소실 분석)

  • Chang W. S.;Kim D. J.;Park K.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.54-65
    • /
    • 1997
  • Wall wetting in diesel engines has been considered as a bad phenomenon because of fuel deposition which makes fuel/air mixing and evaporation worse. In order to avoid the problem, many research works have been carried out. One of the studies is on new combustion chamber systems which are using spray impacting on a wall. In this study a new type of chamber system is analysed using wall impaction model introduced and assessed in the coupled paper. The gas phase is modelled in terms of the Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction, The liquid phase is modelled following the discrete droplet model approach in Lagrangian form. With various conditions the spray distribution, vapor contour and gas flows are analyzed, and then design factors of those combustion systems are recommended.

  • PDF

Experimental Study on Spray Characteristics of Piezo Injector Group-hole Nozzle for Common Rail Diesel Engine (커먼레일 디젤기관용 피에조 인젝터 그룹홀 노즐의 분무 특성에 관한 실험적 연구)

  • Sung, K.A.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.14-19
    • /
    • 2008
  • In order to meet stringent future emission regulations, especially to reduce Particulate Matter (PM) and NOX, stoichiometric diesel combustion technology with a piezo group-hole nozzle injector is being researched for reduction harmful emissions. A new nozzle layout, namely a group-hole nozzle, which has one group of small orifices with a wide spray included angle was investigated to improve the efficiency of stoichiometric diesel combustion. From this point of view, the group-hole nozzle suggested by Dense Co. is an attractive candidate method applicable to stoichiometric diesel combustion. The group-hole nozzle concept is to reduce the injector nozzle hole diameters without sacrificing spray penetration by closely locating two holes. Experimental studies have proven that the spray from group-hole nozzles have similar spray penetration to that of a single hole with equivalent overall nozzle hole area, but the spray drop sizes (SMD) are reduced, aiding vaporization and mixing.

  • PDF

Two Conserved Scalar Approach for the Turbulent Nonpremixed Flames (다중 혼합기 난류 비예혼합 연소시스템에 대한 수치모델링)

  • Kim, Gun-Hong;Kang, Sung-Mo;Kim, Yong-Mo;Ahn, Kook-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.57-61
    • /
    • 2003
  • In the combustion modeling of non-premixed flames, the mixture fraction conserved scalar approach is widely utilized because reactants are mixed at the molecular level before burning and atomic elements are conserved in chemical reactions. In the mixture fraction approach, combustion process is simplified to a mixing problem and the interaction between chemistry and turbulence could be modelled by many sophisticated combustion models including the flamelet model and CMC. However, most of the mixture fraction approach is restricted to one mixture system. In this study, the flamelet model based on the two-feed system is extended to the multiple fuel-feeding systems by the two mixture fraction conserved scalar approach.

  • PDF