• Title/Summary/Keyword: Combustion stability assessment

Search Result 13, Processing Time 0.026 seconds

Combustion Stability for Utility Gas Turbines : Development of a Real-Time Assessment Software (발전용 가스터빈의 실시간 연소안정성 평가 소프트웨어 개발)

  • In, Byeung Goo;Song, Won Joon;Cha, Dong Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.306-315
    • /
    • 2017
  • This study introduces a software for real-time assessment of combustion stability for utility gas turbines. The software was written with LabView, and implemented the time-domain kurtosis as a parameter to proactively access the instantaneous combustion stability during operation of the industrial gas turbine. The simple time-domain assessment algorithm incorporated in the software is advantageous over conventional frequency-domain signal processing of dynamic pressure signal since it reduces the computational cost, thereby making the algorithm more appropriate for real-time monitoring of combustion stability. Benchmark data obtained from a model gas turbine combustor were used for the reproducibility test of the software. The assessment obtained from the software agreed well with previously published results, indicating that incorporation of the software could enhance the performance of systems monitoring the combustion stability for gas turbines during power generation.

Code Development for Online Assessment of Combustion Stability Margin by Utilizing Damping Ratios of Dynamic Pressure Data (동압 데이터의 감쇠계수를 활용한 연소 안정마진 실시간 평가 코드 개발)

  • Song, Won Joon;Ahn, Kwangho;Park, Seik;Kim, Sungchul;Cha, Dong Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.117-119
    • /
    • 2013
  • Combustion stability margin of a model gas turbine has been assessed by utilizing damping ratios of measured dynamic pressure data. It is known that acoustic oscillations in combustion chambers can be described as a superposition of nonlinearly interacting oscillators. Based on this theoretical background, CSMA (Combustion Stability Margin Assessment) code has been developed. The code has been employed into a model gas turbine combustion experiment, focused on the combustion instability, to show its capability to determine the damping ratio of measured dynamic pressure and further to assess combustion stability margin of the experiment, and turned out that the code works well.

  • PDF

Study on Standards of Combustion Stability Assessment of Liquid Rocket Engine Combustion Devices (액체로켓 엔진 연소장치의 연소 안정성 평가 기준에 대한 연구)

  • Seo, Seong-Hyeon;Lee, Kwang-Jin;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.6
    • /
    • pp.34-40
    • /
    • 2009
  • The present study describes the methods and standards for the combustion stability assessment of a thrust chamber and a gas generator as parts of a liquid rocket engine. The first method uses a statistical approach through typical static combustion tests and the second one a dynamic assessment identifying decaying characteristics of pressure fluctuations excited by a pulse generating device. Based on accumulated test results, it is concluded that the maximal values for combustion stability are 3% of a chamber static pressure with a Root-Mean-Square value of pressure fluctuations, and 10 msec with a decay time.

An Experimental Assessment of Combustion Stability of Coaxial Swirl Injectors and an Impinging Injector through Simulating Combustion Test (상압기상연소시험을 통한 동축형 스월 분사기와 충돌형 분사기의 연소 안정성 평가)

  • Park, Junhyeong;Kim, Hongjip
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2017
  • High-frequency combustion instabilities may occur during the development of feasible engine combustors. These instabilities can result in irreparable damages to the wall of combustors or the degradation of engine performance. So, it is essential to identify injectors that have high stability characteristics during the early stages of development. The objective of present study was to assess the stability of coaxial injectors and an impinging injector with different recess lengths in order to develop stable injectors optimally. Stability margin was evaluated based on the distance from operating condition to the unstable regions. A simulating combustion test method was used to analyze the stability of injectors. A small-scale combustion chamber was designed to simulate the first tangential acoustic mode of the actual combustor. Gaseous oxygen and a mixture of methane and propane were used as simulant propellants to satisfy their flow similarity to the actual propellants of a combustor in a liquid rocket combustor. The results indicated that injectors having small recess lengths showed relatively large combustion stability margins. For the injectors of large recess lengths, instability regions with large and super-large amplitude oscillations were observed. Thus, injector with shorter recess lengths had a higher stability than that of longer one due to the different mixing processes.

Combustion stability assessment of muti-injector using simulant propellant in LRE (모의 추진제를 이용한 액체로켓엔진용 다중 분사기의 연소안정성 평가 방법)

  • Seo Seonghyeon;Song Joo-Young;Seol Woo-Seok;Lee Kwang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.229-234
    • /
    • 2004
  • The objective of the present study is to conduct model combustion tests for double swirl coaxial injectors to identify their combustion stability characteristics. Gaseous oxygen and mixture of methane and propane have been used as simulant propellants. Two model chambers tuned to the If acoustic resonance mode of a full-scale thrust chamber were manufactured to be used as a combustion cylinder. The main idea of the experiment is that the mixing mechanism is considered as a dominant factor significantly affecting combustion instability in a full-scale thrust chamber. Self-excited dynamic pressure values in a model chamber show different combustion stability zones with respect to a recess number. Upon test results, couplings between combustion conditions and the IT acoustic resonance mode become strengthened with the increase of a recess length.

  • PDF

Experimental Study on the Combustion Stability of Full Scale Rocket Combustor (실물형 액체로켓 연소기의 연소안정성에 대한 시험적인 고찰)

  • Lee Kwang-Jin;Seo Seong-Hyeon;Kang Dong-Hyeuk;Song Ju-Young;Lim Byoung-Jik;Han Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.240-246
    • /
    • 2005
  • A series of combustion tests of a 30-tonf-class full scale liquid rocket thrust chamber under development has been carried out to verify its design. The test results revealed decent performance in the aspects of efficiency. The combustion stability is one of the most important parameters of liquid rocket engine in addition to the efficiency. Assessment tests of combustion stability must be accomplished to confirm the possibility of combustion instability due to spontaneous or external disturbances. The combustion stability rating tests of the full scale thrust chamber with temporary baffles made of stainless steel were carried out utilizing pulse guns to estimate combustion stability characteristics. The tests results show highly stable combustion stability characteristics. The outcome acquired from the present experimental study will be used to design an actively cooled baffle that can survive for the life time operation of the thrust chamber.

  • PDF

Experimental study of combustion stability assessment of injector (분사기의 연소 안정성 평가를 위한 실험적 방법 연구)

  • Seo, Seong-Hyeon;Lee, Kwang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.61-66
    • /
    • 2004
  • The objective of the present study is to develop methodology for the assessment of combustion stability of liquid rocket injectors. To simulate actual combustion occurring inside of a thrust chamber, a fullscale injector has been employed in the study, which bums gaseous oxygen and mixture of methane and propane. The main idea of the experiment is that the mixing mechanism is considered as a dominant factor significantly affecting combustion instability in a fullscale thrust chamber. A single split triplet injector has been used with an open-end cylindrical combustion chamber. The characteristics revealed by excited dynamic pressures in gaseous combustion show degrees of relative acoustic damping depending on operating conditions. Upon test results, the direct comparison between various types of injectors can be realized for the selection of the best design among prospective injectors.

A Study on Total Fire Risk Assessment of Wallpapers (벽지의 종합적 화재 위험성 평가에 관한 연구)

  • 박미라;김광일;김태구
    • Fire Science and Engineering
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 2003
  • The purpose of this study is to evaluate flame retardant performance, thermal stability and toxicity of combustion gases for some commercial wallpapers. ID evaluate flame retardant performance 45 degree combustion experiment method was used and thermal stability was evaluated using DSC and TGA apparatus (OSC-50/Shimadzu, TGA2050/TA Instruments Inc) . Concentrations of CO, $CO_2$, HCN and HCI were measured with (GASTEC/Japan, MSA400 Gas Monitor/Infitron Inc) and toxicity indices using NIST N-Gas Model were applied to evaluate the toxicity of combustion gases. The evaluation produced the following results : First, paper cork and PVC wallpaper treated with flame retardants were found to be suitable for flame retardant performance standards. Second, paper, cork and PVC wallpaper non-treated with flame retardants were shown to be relatively more hazardous because they had greater calorific values and a faster decomposition time than the flame retardant treated wallpapers. Third, the toxicity indices of non-treated wallpapers were found to be higher than those of treated wallpapers, and the toxicity index of PVC wallpapers was higher than those of paper and cork wallpapers.

Brief Note on Acoustic Impedance Characteristics at Flow Boundaries (경계에서의 음향 임피던스 특성에 대한 연구 고찰)

  • Seo, Seonghyeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.103-109
    • /
    • 2017
  • An increase in acoustic energy in a combustion chamber coupled with heat fluctuations from flame results in the occurrence of combustion instability. The assessment of combustion stability requires the prediction of acoustic energy variation by understanding the acoustical characteristics of flow boundaries in a combustion chamber. The present paper discusses about the characteristics of acoustic impedances at boundaries in terms of Strouhal number and summarizes theoretical analyses on the acoustic characteristics of injector-head-like configurations. Also, the details of the two-microphone measurement technique have been presented.

Dynamic Pressure Characteristics of Pulse Gun Device for Combustion Stability Rating of Liquid Rocket Engines (액체 로켓엔진 연소 안정성 평가를 위한 압력 교란 장치 특성 연구)

  • Seo,Seong-Hyeon;Go,Yeong-Seong;Lee,Gwang-Jin;Park,Seong-Jin;Lee,Su-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.94-99
    • /
    • 2003
  • For the assessment of combustion stability of a liquid rocket engine, a device called "Pulse Gun" should be developed first, which can induce artificial perturbations that may lead to excitations of pressure oscillations in a combustion chamber. A model chamber has been used for identifying design parameters of a pulse gun that defines its characteristics. Dynamic pressure measurements showed that shock waves generated from pulse guns are axisymmetric around the axis of a pulse gun barrel. Pressure waves perturbed by a pulse gun induce resonant acoustic frequencies of a model chamber. This fact indicates that successful pressure field perturbations of the KSR-III combustion chamber can be performed by a newly developed pulse gun device. A maximum value of dynamic pressure peaks measured at the opposite point against a pulse gun outlet becomes stronger as charge mass of pulse gun powder increases.