DOI QR코드

DOI QR Code

Brief Note on Acoustic Impedance Characteristics at Flow Boundaries

경계에서의 음향 임피던스 특성에 대한 연구 고찰

  • Seo, Seonghyeon (Department of Mechanical Engineering, Hanbat National University)
  • Received : 2017.07.14
  • Accepted : 2017.09.08
  • Published : 2017.12.01

Abstract

An increase in acoustic energy in a combustion chamber coupled with heat fluctuations from flame results in the occurrence of combustion instability. The assessment of combustion stability requires the prediction of acoustic energy variation by understanding the acoustical characteristics of flow boundaries in a combustion chamber. The present paper discusses about the characteristics of acoustic impedances at boundaries in terms of Strouhal number and summarizes theoretical analyses on the acoustic characteristics of injector-head-like configurations. Also, the details of the two-microphone measurement technique have been presented.

연소화염 열에너지와 결합된 음향에너지 증가는 연소 불안정성을 유발할 수 있다. 연소 안정성 예측을 위해서는 연소실 내부 유동 경계에서 음향특성을 파악해서 궁극적으로 음향에너지의 증가 여부를 파악하는 것이 필요하다. 본 논문에서는 연소기 헤드와 같은 유동 경계 형상에 대한 음향 특성을 연구한 기존의 주요 분석적 결과를 정리하여, Strouhal 수로 표현되는 경계면 음향 임피던스 특성을 알아보았다. 또한 이중 마이크로폰을 활용한 실험적 방법을 통해 경계 음향 임피던스 특성에 대한 이론적/해석적 결과를 검증하기 위한 기법을 조사 정리하였다.

Keywords

References

  1. Lieuwen, T.C. and Yang, V., "Combustion Instabilities in Gas Turbine Engines," Progress in Astronautics and Aeronautics, Vol. 210, pp. 3-26, 2005.
  2. Yang, V. and Anderson, W. "Liquid Rocket Engine Combustion Instability," Progress in Astronautics and Aeronautics, Vol. 169, pp. 3-37, 1995.
  3. Seo, S., "Characteristics of High-Frequency Combustion Instabilities Occurring in Combustion Devices," Journal of Korean Society of Combustion, Vol. 17, No. 1, pp. 30-36, 2012.
  4. Seo, S. and Park, Y.J., "Current Research Status on Flame Response Characteristics to Flow Disturbances," Journal of the Korean Society of Propulsion Engineers, Vol. 18, No. 5, pp. 87-94, 2014. https://doi.org/10.6108/KSPE.2014.18.5.087
  5. Leppington, F.G., "The Effective Compliance of Perforated Screens," Mathematika, Vol. 24, Issue 2, pp. 199-215, 1977. https://doi.org/10.1112/S0025579300009116
  6. Hughes, I.J. and Dowling, A.P., "The Absorption of Sound by Perforated Linings," Journal of Fluid Mechanics, Vol. 218, pp. 299-335, 1990. https://doi.org/10.1017/S002211209000101X
  7. Howe, M.S., "On the Theory of Unsteady High Reynolds Number Flow through a Circular Aperture," Proceeding of Royal Society of London A, Vol. 366, No. 1725, pp. 205-223, 1979. https://doi.org/10.1098/rspa.1979.0048
  8. Jing, X. and Sun, X., "Effect of Plate Thickness on Impedance of Perforated Plates with Bias Flow," AIAA Journal, Vol. 38, No. 9, pp. 1573-1578, 2000. https://doi.org/10.2514/2.1139
  9. Seybert, A.F. and Ross, D.F., "Experimental Determination of Acoustic Properties Using a Two-Microphone Random-Excitation Technique," The Journal of the Acoustical Society of America, Vol. 61, No. 5, pp. 1362-1370, 1977. https://doi.org/10.1121/1.381403
  10. Seybert, A.F., "Two-Sensor Methods for the Measurement of Sound Intensity and Acoustic Properties in Ducts," The Journal of the Acoustical Society of America, Vol. 83, No. 6, pp. 2233-2239, 1988. https://doi.org/10.1121/1.396352
  11. Chung, J.Y. and Blaser, D.A., "Transfer Function Method of Measuring In-Duct Acoustic Properties. I. Theory," The Journal of the Acoustical Society of America, Vol. 68, No. 3, pp. 907-913, 1980. https://doi.org/10.1121/1.384778
  12. Chung, J.Y. and Blaser, D.A., "Transfer Function Method of Measuring In-Duct Acoustic Properties. II. Experiment," The Journal of the Acoustical Society of America, Vol. 68, No. 3, pp. 914-921, 1980. https://doi.org/10.1121/1.384779