• Title/Summary/Keyword: Combustion instability

Search Result 481, Processing Time 0.029 seconds

Spray Characteristics of the Injector for the APU Gas Tubine Engine at Airplane Operating Conditions (항공기 작동조건에 따른 APU 가스터빈엔진 연료노즐의 분무특성)

  • Choi, Chea-Hong;Choi, Seong-Man;Lim, Byeong-Jun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2008
  • Spray characteristics for APU gas turbine engine are investigated. In the test, four flight conditions such as sea level idle, sea level max power, 20,000 feet idle, 20,000 feet max power are used as spray experimental conditions. Spray visualization was performed by using ND-YAG laser bean PDPA(Phase Doppler Particle Analyzer) was used for measuring the particle diameter and velocity from 20 mm to 100 mm from discharge orifice. From the test result, SMD is $90{\sim}95\;{\mu}m$ 맛 20,000 ft idle condition and SMD is $60{\sim}75\;{\mu}m$ at sea level idle condition. Also SMD is $55{\sim}65\;{\mu}m$ at 20,000 ft max power condition and SMD is $30{\sim}70\;{\mu}m$ at sea level max power condition. In the case of 20,000 ft idle condition, combustion instability could be occurred due to the higher drop diameter. Therefore it is necessary to decrease the droplet diameter in the high altitude condition.

Large Eddy Simulation of Swirling Premixed Flames in a Model Gas Turbine Combustor (모형 가스터빈 연소기에서 선회 예혼합화염의 대와동모사(LES))

  • 황철홍;이창언
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.79-88
    • /
    • 2006
  • In the present paper, the swirl flow structure and flame characteristics of turbulent premixed combustion in a model gas turbine combustor are investigated using large eddy simulation(LES). A G-equation flamelet model is employed to simulate the unsteady flame behavior. When inlet swirl number is increased, the distinct flow structures, such as the shapes of corner recirculation and center toroidal recirculation zone, are observed and the flame length is shorted gradually. Also, the phenomena of flashback are identified at strong swirl intensity. In order to get the accurate description of unsteady flame behavior, the predictive ability of the acoustic wave in a combustor is primarily evaluated. It is found that the vortex generated near the edge of step plays an important role in the flame fluctuation. Finally it is examined systematically that the flame and heat release fluctuation are coupled strongly to the vortex shedding generated by swirl flow and acoustic wave propagation from the analysis of flame-vortex interaction.

Effect of a Preprocessing Method on Inverting Chemiluminescence Images of Flames Burning Substitute Natural Gas (대체천연가스 화염 이미지 역변환에서 전처리 효과)

  • Ahn, Kwangho;Song, Wonjoon;Cha, Dongjin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.12
    • /
    • pp.609-619
    • /
    • 2015
  • A preprocessing scheme utilizing multi-division of the ROI (region of interest) in a chemiluminescence image during inversion is proposed. The resulting inverted image shows the flame's structure, which can be useful for studying combustion instability. The flame structure is often quantitatively visualized with PLIF (planar laser-induced fluorescence) images as well. The chemiluminescence image, which is a line-integral of the flame, needs to be preprocessed before inversion, mainly due to the inherent noise and the assumption of axisymmetry during the inversion. The feasibility of the multi-division preprocessing technique has been tested with experimentally-obtained OH PLIF and $OH^*$ chemiluminescence images of jet and swirl-stabilized flames burning substitute natural gas (SNG). It turns out that the technique outperforms two conventional methods, specifically, the technique without preprocessing and the one with uni-division, reconstructing the SNG flame structures much better than its two counterparts when compared using corresponding OH PLIF images. The characteristics of the optimum degree of polynomials to be applied for curve-fitting of the flame region data for the multi-division method involving two flames has also been investigated.

An Experimental Study on the Flame Dynamics in Ducted Combustor (덕트형 연소기에서 화염의 동특성에 관한 실험적 연구)

  • Jeong, Chanyeong;Kim, Taesung;Song, Jinkwan;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.121-131
    • /
    • 2013
  • The characteristics of flame dynamics occurring near the bluff body was experimentally investigated in a model combustor with V-gutter bluff body. Measurements of chemiluminescence with high speed camera and PIV were performed for visualization of flame structure. Flashback occurs due to the change of pressure gradient in the combustor, and the flashback distance depends on equivalent ratio. Unstable flames can be classified into three types depending on the flashback distance and structure. When the flame goes over the bluff body, an unusual flame structure occurs at the front of the bluff body. Re-stabilization takes place as the flame moves downstream of the combustor. This process is supported by a strong vortex structure behind the bluff body.

Experimental Study on Dynamic Characteristics of an Impinging Jet Injector (충돌형 분사기의 동특성 실험연구)

  • Kim, Jiwook;Chung, Yunjae;Lee, Ingyu;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.86-94
    • /
    • 2013
  • Research on dynamic characteristics of injectors gives us insight for preventing combustion instability in a rocket engine. While lots of studies have been done about swirl injectors' dynamic characteristics, little is known about impinging jet injectors' dynamic characteristics. For this reason, this study was aimed to reveal the dynamic characteristics of an impinging jet injector based on experiment using a hydraulic mechanical pulsator. Gain, which is the relationship between input pressure and output value(pressure or velocity) was analyzed with the frequency and manifold pressure change. Pulsating frequency was chosen in the low range: 5, 10, 15 Hz. As a background work, Methods to determine the jet velocity were discussed. Klystron effect was also considered as a factor of this experiment.

Reexamination of the combustion instability of solid propellant with radiative heat transfer (복사 열전달을 고려한 고체 추진제의 연소 불안정 현상에 관한 재해석)

  • 이창진;변영환;이재우
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.10-11
    • /
    • 1997
  • 고체 추진제를 사용하는 추진 시스템을 개발하는데 가장 커다란 문제로 인식되고 있는 것은 추진제의 연소 특성을 이해하는 일이다. 그 중에서도 연소실의 압력 진동과 추진제 벽면으로 흡수되는 복사 열전달에 의한 연소율(burning rate)의 변화로 인하여 발생하는 연소 불안정에 대한 이해는 아직도 완전히 규명되지 않고 있다. 고체 추진제의 연소 불안정에 대한 이론적 해석은 준-정상 1차원 해석(Quasi-Steady Homogeneous One-Dimension) 방법에 의하여 단순화된 지배방정식을 해석하는 것이 일반적으로 잘 알려져 있는 방법이다. 이 가정은 고체 추진제가 연수되는 영역을 두께가 매우 얇은 영역의 표면반응영역(surface reaction layer)과 화학반응이 없는 응축상태영역(condensed phase zone) 그리고 기체상태의 연료와 화염이 존재하는 기체상태영역(gas phase zone) 등의 3영역으로 구분하며, 기체상태영역에서 발생하는 교란에 대한 응축상태영역의 반응시간 크기(response time scale)가 매우 크기 때문에 응축상태영역의 반응은 준 정상적으로 일어난다고 가정하는 것이다.그러나, 연소실의 온도가 $3000^{\circ}K$ 정도의 높은 온도이어서 복사 열전달에 의한 고체 추진제의 가열이 중요한 열전달 방법으로 작용하게 되므로 이를 무시한 이론적 해석은 물리적인 중요성이 약하여질 수밖에 없다. 본 연구에서는 기체영역으로부터 전달되는 복사 열전달은 투명(transparent)한 표면반응영역을 통과하여 응축상태영역에서 모두 흡수되며 추진제 표면에서의 복사열방출(emission)을 고려하였다. 또한 연소불안정 현상을 해석하기 위하여 표면반응영역에서의 경계조건은 선형교란량으로 대치하는 Zn(Zeldovich-Novozhilov) 방법을 사용하였다. 이 방법은 기체상태영역에 대한 구체적인 해석없이도 연소불안정 현상을 해석할 수 있는 장점이 잇다. 즉 응축상태영역에서의 연소율과 표면온도는 각각 기체영역으로부터 전달되는 온도구배와 연소압력, 그리고 복사 열전달의 함수관계이므로 선형교란에 의한 추진제표면에서의 교란경계조건을 얻을 수 잇으며, 응축영역의 교란지배방정식과 함께 사용하여 압력교란과 복사 열전달의 교란에 대한 연소율의 교란 증감 여부를 판단하여 연소 불안정 현상을 해석할 수 있다.

  • PDF

Stability Analysis of Floating Ring Bearing Supported Turbocharger (플로팅 링 베어링으로 지지된 터보차저 로터의 안정성 해석)

  • Lee, Donghyun;Kim, Youngcheol;Kim, Byungok
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.302-307
    • /
    • 2015
  • The use of turbocharger in internal combustion engines has increased as it is a key components for improving system efficiency without increasing engine size. Because of increasing demand, many studies have evaluated rotordynamic performance so as to increase rotation speed. This paper presents a linear and nonlinear analysis model for a turbocharger rotor supported by a floating ring bearing. We constructed rotor model by using the finite element method and approximated bearings as being infinitely short. In the linear model, we considered fluid film force as stiffness and damping element. In nonlinear analysis, calculation of the fluid film force involved solving the time dependent Reynolds equation. We verified the developed model by comparing the results to those of previous research. The analysis results show that there are four unstable modes, which are rigid body modes combining ring and rotor motion. As the rotating speed increases, the logarithmic decrement shows that certain unstable modes goes into the stable area or the stable mode goes into the unstable area. These unstable modes appear as sub-synchronous vibrations in nonlinear analysis. In nonlinear analysis frequency jump phenomenon demonstrated in several experimental studies appears. The analysis results also showed that frequency jump phenomenon occurs when the vibration mode changes and the sequence of unstable mode matches the linear analysis result. However, the natural frequency predicted using linear analysis differs from those obtained using nonlinear analysis.

Performance Evaluation of Ethanol Blended Hydrogen Peroxide Thrusters (에탄올 블렌딩한 과산화수소 추력기의 성능평가)

  • Lee, Jeong-Sub;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.100-103
    • /
    • 2012
  • The blending method that is an addition of small quantity of fuel was used to increase the performance of green propellant thruster. 90 wt.% hydrogen peroxide as a green propellant was selected, and ethanol was used as a blended fuel. The o/f ratio was chosen as 50 which has higher theoretical performance than 98 wt.% hydrogen peroxide. The chamber temperature of blended hydrogen peroxide was higher than adiabatic chamber temperature of hydrogen peroxide. Therefore, performance can be improved by ethanol blending. Several catalyst and its support were compared to find appropriate catalyst for decomposition and combustion of ethanol blended hydrogen peroxide. As a experimental results, Pt was suitable, but $MnO_2$ had a chamber instability when it was reused. The ${\alpha}-Al_2O_3$ which is high heat-resistant support showed very unstable performance in both Pt and $MnO_2$ catalyst since it has low decomposition performance.

  • PDF

Ignition Transition by Ignition Position and Time of Gaseous Oxygen/Kerosene Combustor (기체산소/케로신 연소기에서 점화 위치 및 시간에 따른 점화 과정 연구)

  • Song, Wooseok;Shin, Dongsoo;Son, Min;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.85-90
    • /
    • 2018
  • The objective of this paper is to observe effects of ignition position and time on ignition transition. A gaseous oxygen and liquid kerosene mixture is used as propellant with a shear-coaxial injector. In order to study the ignition delay time and combustion instability intensity, the pressure transducer was used. Sequences, excepting igniter operation time, were fixed to compare the ignition time only. Initial pressure peak and ignition delay time increased as the ignition time was delayed. Additionally, an unstable flame development zone was detected when the igniter was away from the injector.

Rotordynamic Analysis of a Dual-Spool Turbofan Engine with Focus on Blade Defect Events (블레이드 손상에 따른 이축식 터보팬 엔진의 동적 안정성 해석)

  • Kim, Sitae;Jung, Kihyun;Lee, Junho;Park, Kihyun;Yang, Kwangjin
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.105-115
    • /
    • 2020
  • This paper presents a numerical study on the rotordynamic analysis of a dual-spool turbofan engine in the context of blade defect events. The blades of an axial-type aeroengine are typically well aligned during the compressor and turbine stages. However, they are sometimes exposed to damage, partially or entirely, for several operational reasons, such as cracks due to foreign objects, burns from the combustion gas, and corrosion due to oxygen in the air. Herein, we designed a dual-spool rotor using the commercial 3D modeling software CATIA to simulate blade defects in the turbofan engine. We utilized the rotordynamic parameters to create two finite element Euler-Bernoulli beam models connected by means of an inter-rotor bearing. We then applied the unbalanced forces induced by the mass eccentricities of the blades to the following selected scenarios: 1) fully balanced, 2) crack in the low-pressure compressor (LPC) and high pressure compressor (HPC), 3) burn on the high-pressure turbine (HPT) and low pressure compressor, 4) corrosion of the LPC, and 5) corrosion of the HPC. Additionally, we obtained the transient and steady-state responses of the overall rotor nodes using the Runge-Kutta numerical integration method, and employed model reduction techniques such as component mode synthesis to enhance the computational efficiency of the process. The simulation results indicate that the high-vibration status of the rotor commences beyond 10,000 rpm, which is identified as the first critical speed of the lower speed rotor. Moreover, we monitored the unbalanced stages near the inter-rotor bearing, which prominently influences the overall rotordynamic status, and the corrosion of the HPC to prevent further instability. The high-speed range operation (>13,000 rpm) coupled with HPC/HPT blade defects possibly presents a rotor-case contact problem that can lead to catastrophic failure.