DOI QR코드

DOI QR Code

Ignition Transition by Ignition Position and Time of Gaseous Oxygen/Kerosene Combustor

기체산소/케로신 연소기에서 점화 위치 및 시간에 따른 점화 과정 연구

  • Song, Wooseok (Department of Aerospace and Mechanical Engineering, Graduate School of Korea Aerospace University) ;
  • Shin, Dongsoo (Department of Aerospace and Mechanical Engineering, Graduate School of Korea Aerospace University) ;
  • Son, Min (Department of Aerospace and Mechanical Engineering, Graduate School of Korea Aerospace University) ;
  • Koo, Jaye (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • Received : 2017.06.07
  • Accepted : 2017.12.26
  • Published : 2018.08.01

Abstract

The objective of this paper is to observe effects of ignition position and time on ignition transition. A gaseous oxygen and liquid kerosene mixture is used as propellant with a shear-coaxial injector. In order to study the ignition delay time and combustion instability intensity, the pressure transducer was used. Sequences, excepting igniter operation time, were fixed to compare the ignition time only. Initial pressure peak and ignition delay time increased as the ignition time was delayed. Additionally, an unstable flame development zone was detected when the igniter was away from the injector.

본 논문에서는 점화 위치 및 시간에 따른 점화 지연 및 연소 불안정에 미치는 영향을 관찰하는 것이 목표이다. 산화제는 기체 산소를 사용하였고 연료는 액체 케로신을 사용하였다. 점화 지연 및 연소 불안정 정도를 관찰하기 위해 압력 트랜스듀서를 이용하여 정압을 측정하였다. 모든 경우의 점화기 작동시기를 제외한 점화 시퀀스는 동일하게 설정하였고 점화 시간은 25 ms 간격으로 설정하였다. 점화 시간이 늦어질수록 초기 압력 피크값과 점화 지연 시간이 증가하는 경향을 보였다. 점화 위치가 분사기로부터 멀어질수록 초기 압력 피크 이후 불안정한 화염 발달 구간이 존재하였다.

Keywords

References

  1. Hulka, J., Forde, J. S., Werling, R. E., Anisimov, V. S., Kozlov, V. A. and Kositsin, L. P., "Modification and Verification Testing of a Russian NK-33 Rocket Engine for Reusable and Restartable Applications," 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, O. H., U.S.A., AIAA 98-3361, AIAA 98-3361, Jul. 1998.
  2. Ballal, D. R. and Lefebvre, A. H., "Ignition of Liquid Fuel Sprays at Subatmospheric Pressures," Combustion of Flame, Vol. 31, pp. 115-126, 1978. https://doi.org/10.1016/0010-2180(78)90122-0
  3. Julie, K., Charles, S. and William, M., "Experimental Investigation of Augmented Spark Ignition of a $LO_2/LCH_4$ Reaction Control Engine at Altitude Conditions," NASA TM-217611, 2012.
  4. Hoeprich, M. R., "Rolling Element Bearing Fatigue Damage Propagation," Journal of Tribology, Vol. 144, No. 2, pp. 328-333, 1992.
  5. Lefebver, A., Freeman, W. and Cowell, L., "Spontaneous Ignition Delay Characteristics of Hydrocarbon Fuel/Air Mixtures," NASA CR-175064, 1986.
  6. Gastal, J., "Ariane Third Stage Ignition Improvement," 24th Joint Propulsion Conference, Boston, M.A., U.S.A., AIAA 88-2932, Jul. 1988.
  7. Julie, K., Charles, S. and William, M., "Experimental Investigation of AugmentedSpark Ignition of a LO2/LCH4 Reaction ControlEngine at Altitude Conditions," NASA TM-217611, 2012.
  8. Tran, X. P. and Fredrick P. W., "Laser-Induced Spark Ignition of CH4/Air Mixtures," Combustion and Flame, Vol. 119, No. 3, pp. 203-216, 1999. https://doi.org/10.1016/S0010-2180(99)00051-6
  9. Song, W., Kim, D., Lee, K., Shin, B., Ko, S. and Koo, J., "Effects of Kerosene Heating on Dynamic Characteristics of GOx/Kerosene Combustor," Acta Astronautica, Vol. 126, pp. 528-535, 2016. https://doi.org/10.1016/j.actaastro.2016.03.018
  10. Harrje, D.T., "Liquid Propellant Rocket Combustion Instability," NASA SP-194, 1972.
  11. Smith, J.J., Bechle, M., Suslov, D., Oschwald, M. and Schneider, G., "Steady-Steate High Pressure LOx/$H_2$ Rocket Engine Combustion," Aerospace Science and Technology, Vol. 11, No. 1, pp. 39-47, 2007. https://doi.org/10.1016/j.ast.2006.08.007