DOI QR코드

DOI QR Code

덕트형 연소기에서 화염의 동특성에 관한 실험적 연구

An Experimental Study on the Flame Dynamics in Ducted Combustor

  • Jeong, Chanyeong (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kim, Taesung (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Song, Jinkwan (School of Aerospace System, University of Cincinnati) ;
  • Yoon, Youngbin (School of Mechanical and Aerospace Engineering, Seoul National University)
  • 투고 : 2012.11.29
  • 심사 : 2013.09.17
  • 발행 : 2013.10.01

초록

V-거터형 보염기가 장착된 덕트형 연소기에서 연소 불안정이 발생할 때 보염기 근처에서 나타나는 화염의 동특성에 대한 실험적 연구를 수행하였다. 화염 구조를 가시화하기 위해서 고속 카메라를 이용한 자발광 계측과 PIV 기법을 사용하였다. 연소 불안정이 발생하면 연소기 내부의 압력 구배에 변화가 생기면서 화염의 역화 현상이 일어나고, 역화의 진행거리는 당량비에 따라서 달라졌다. 역화의 진행거리와 구조에 따라 불안정 화염을 세 가지 유형으로 분류하였다. 일정 당량비 이상에서는 역화가 진행됨에 따라 보염기 앞쪽 끝단에서 특이한 화염 구조를 관측할 수 있었다. 순압력 구배에서 역화 되었던 화염면은 후류로 밀리고, 이때 보염기 안쪽에 형성된 와류로 인하여 재안정화가 이루어지는 것을 확인하였다.

The characteristics of flame dynamics occurring near the bluff body was experimentally investigated in a model combustor with V-gutter bluff body. Measurements of chemiluminescence with high speed camera and PIV were performed for visualization of flame structure. Flashback occurs due to the change of pressure gradient in the combustor, and the flashback distance depends on equivalent ratio. Unstable flames can be classified into three types depending on the flashback distance and structure. When the flame goes over the bluff body, an unusual flame structure occurs at the front of the bluff body. Re-stabilization takes place as the flame moves downstream of the combustor. This process is supported by a strong vortex structure behind the bluff body.

키워드

참고문헌

  1. Zukoski, E.E., "Flame Stabilization on Bluff Bodies at Low and Intermediate Reynolds Numbers," Ph.D. Thesis, California Institute of Technology, 1954.
  2. Roshko, A., "On the Development of Turbulent Wakes from Vortex Streets," Report NACA TN 2913, California Institute of Technology, 1953.
  3. Longwell, J.P., Frost, E.E. and Weiss, M.A., "Flame Stability in Bluff Body Recirculation Zones," Industrial & Engineering Chemistry, Vol. 45, Issue 8, pp. 1629-1633, 1953. https://doi.org/10.1021/ie50524a019
  4. Yamaguchi, S., Ohiwa, N., and Hasegawa, T., "Structure and blow-off mechanism of rod-stabilized premixed flame," Combustion and Flame, Vol. 62, Issue 1, pp. 31-41, 1985. https://doi.org/10.1016/0010-2180(85)90091-4
  5. Kiel, B., Garwick, K., Gord, J.R., Miller, J., Lynch, A., Hill, R., and Phillips, S., "A Detailed Investigation of Bluff Body Stabilized Flames," 45th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper No. 2007-168, 2007.
  6. Bush, S.M. and Gutmark, E.J., "Reacting and Nonreacting Flowfields of a V-Gutter Stabilized Flame," AIAA Journal, Vol. 45, Issue 3, pp. 662-672, 2007. https://doi.org/10.2514/1.22655
  7. Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Oxford University Press, 1961.
  8. Prasad, A. and Williamson, C.H.K., "The instability of the shear layer separating from a bluff body," Journal of Fluid Mechanics, Vol. 333, pp. 375-402, 1997. https://doi.org/10.1017/S0022112096004326
  9. Chaudhuri, S., Kostka, S., Renfro, M.W. and Cetegen, B.M., "Blowoff dynamics of bluff body stabilized turbulent premixed flames," Combustion and Flame, Vol. 157, Issue 4, pp. 790-802, 2010. https://doi.org/10.1016/j.combustflame.2009.10.020
  10. Langhorne, P.J., "Reheat buzz: an acoustically coupled combustion instability. Part 1. Experiment," Journal of Fluid Mechanics, Vol. 193, pp. 417-443, 1988. https://doi.org/10.1017/S0022112088002204
  11. Bloxsidge, G.J., Dowling, A.P. and Langhorne, P.J., "Reheat buzz: an acoustically coupled combustion instability. Part 2. Theory," Journal of Fluid Mechanics, Vol. 193, pp. 445-473, 1988. https://doi.org/10.1017/S0022112088002216
  12. Shanbhogue, S.J., Husain, S., and Lieuwen, T., "Lean blowoff of bluff body stabilized flames: Scaling and dynamics," Progress in Energy and Combustion Science, Vol. 35, Issue 1, pp. 98-120, 2009. https://doi.org/10.1016/j.pecs.2008.07.003
  13. Nauert, A., Petersson, P., Linne, M. and Dreizler, A., "Experimental analysis of flashback in lean premixed swirling flames: conditions close to flashback," Experiments in Fluids, Vol.43, pp.89-100, 2007. https://doi.org/10.1007/s00348-007-0327-x
  14. Sommerer, Y., Galley, D., Poinsot, T., Ducruix, S., Lacas, F. and Veynante, D., "Large eddy simulation and experimental study of flashback and blow-off in a lean partially premixed swirled burner," Journal of Turbulence, Vol. 5, Issue 37, 2004.
  15. Keller, J.O., Vaneveld, L., Korschelt, D., Hubbard, G.L., Ghoniem, A.F., Daily, J.W. and Oppenheim, A.K., "Mechanism of Instabilities in Turbulent Combustion Leading to Flashback," AIAA Journal, Vol. 20, No. 2, pp. 254-252, 1982. https://doi.org/10.2514/3.51073
  16. Vaneveld, L., Hom, K. and Oppenheim, A.K., "Secondary Effects in Combustion Instabilities Leading to Flashback," AIAA Journal, Vol. 22, No. 1, pp. 81-82, 1984. https://doi.org/10.2514/3.8342
  17. Dowling, A.P., "A kinematic model of a ducted flame," Journal of Fluid Mechanics, Vol. 394, pp. 51-72, 1999. https://doi.org/10.1017/S0022112099005686
  18. Thibaut, D. and Candel, S., "Numerical Study of Unsteady Turbulent Premixed Combustion: Application to Flashback Simulation," Combustion and Flame, Vol. 113, Issues 1-2, pp. 53-65, 1998. https://doi.org/10.1016/S0010-2180(97)00196-X
  19. Birch, A.D., Brown, D.R., Fairweather, M. and Hargrave, G.K., "An Experimental Study of a Turbulent Natural Gas jet in a Cross-Flow," Combustion Science and Technology, Vol. 66, pp. 217-232, 1989. https://doi.org/10.1080/00102208908947151