• Title/Summary/Keyword: Combustion heat

Search Result 1,725, Processing Time 0.027 seconds

The Demonstration Test Result of 100% Bio Heavy Oil Combustion at the 75 MWe Oil Fired Power Plant (75 MWe급 중유 발전소 보일러에 대한 바이오중유 100% 전소 실증 연소실험 결과)

  • Baek, Sehyun;Park, Hoyoung;Kim, Young Joo;Kim, Tae Hyung;Kim, Hyunhee;Ko, Sung Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.2
    • /
    • pp.28-36
    • /
    • 2014
  • Bio fuel oil combustion experiments were successfully demonstrated at the 75 MWe oil-fired power plant without major equipment retrofit and 100% bio-fuel oil combustion was possible without big problems. The experimental data error correction was conducted and numerical model-based analysis technique was applied for the evaluation of the results. Incase of bio fuel oil combustion, heat absorption of radiative heat transfer section was reduced while convection section has opposite trend. The furnace exit gas temperature tends to rise slightly. Environment emissions such as NOx and SOx concentrations showed a tendency to decrease during the bio fuel oil combustion period. On the other hand, boiler efficiency was slightly underestimated.

A study on the spray combustion characteristics in a cylinder of a D.I.diesel engine with the electronically controlled injector (전자제어식 직접분사 디젤 엔진 연소실내의 분무연소 특성에 관한 연구)

  • 정재우;김성중;이기형;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.50-56
    • /
    • 2000
  • It is well known that the combustion phenomenon of diesel engine is an unsteady turbulent diffusion combustion. Therefore, the combustion performance of diesel engine is related to a complex phenomenon which involves the various factors of combustion, such as a injection pressure, injection timing, injection rate, and operation conditions of engine. In this study, the spray and the flame development processes in a single cylinder D.I. diesel visualization engine which uses the electronically controlled injection system were visualized to interpret the complicated combustion phenomenon by using high speed CCD camera. In addition, the cylinder pressure and heat release rate were also obtained in order to analyze the diesel combustion characteristics under several engine conditions.

  • PDF

A Manufacturing of NiTi Shape Memory Alloy by Combustion Synthesis (연소합성에 의한 NiTi 형상기억 합금의 제조)

  • Shon, I.J.;Kim, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.2
    • /
    • pp.120-126
    • /
    • 1995
  • The effects of heating rate on the combustion temperature, the ignition temperature, the microstrurcture and the shape memory ability of products formed by combustion were investigated. The ignition temperature decreased with increasing heating rate. Combustion temperature and ${\Delta}T$(difference temperature between the ignition temperature and the combustion temperature) increased with increasing heating rate. The grain size of the product increased with increasing heating rate. Combustion synthesis did not completely occur below the heating rate of $10^{\circ}C/min$. NiTi intermetallic compound was completely formed at the heating rate of $600^{\circ}C/min$ and the product by combustion method had a good shape memory effect.

  • PDF

Onset condition of the combustion-driven sound in a surface burner (표면 연소기의 연소진동음의 발생조건)

  • Kwon, Y.P.;Lee, J.W.;Lee, D.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.221-228
    • /
    • 1997
  • A strong combustion-driven sound from a surface burner made of a perforated metal fiber plate for premixed gas was investigated to clarify the physical mechanism of its generation. A simple model was developed for the acoustic power generation in terms of the heat transfer response function and the acoustic impedance of the burner. The acoustic impedance of the perforated metal fiber placed on the open exit was measured and the heat release response of the burner to the oscillating flow associated with the acoustic disturbance was expressed in terms of a response function. It was found that the power is generated by the heat release in response to the downstream particle velocity, in contrast to the upstream velocity in the case of the Rijke oscillation driven by a heater placed in the lower half of a columm with upstream flow. The measured frequencies of the oscillation were in agreement with the estimated resonance frequencies and their excitation was varied with the combustion conditions. For the same fuel rate, the excited frequency increases with the air ratio if it is low but decreases with the ratio if not so low. Such frequency characteristics were explained by assuming a heat release response function with a time constant and it was shown that the excited frequency decreases as the time constant increases.

  • PDF

ICE GROSS HEAT RELEASE STRONGLY INFLUENCED BY SPECIFIC HEAT RATIO VALVES

  • Lanzafame, R.;Messina, M.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.125-133
    • /
    • 2003
  • Several models for the evaluation of Gross Heat Release from the internel combustion engine (ICE) are often used in literature. One of these is the First Law - Single Zone Model (FL-SZM), derived from the First Law of Thermodynamic. This model present a twice advantage: first it describes with accuracy the physic of the phenomenon (charge heat release during the combustion stroke and heat exchange between gas and cylinder wall); second it hat a great simplicity in the mathematical formulation. The evaluation of Heat Release with the FL-SZM is based on pressure experimental measurements inside the cylinder, and ell the assumption of several parameters as the specific heat ratio, wall temperature, polytropic exponent for the motored cycle evaluation, and many others. In this paper the influence of gases thermodynamic properties on Cross Heat Release has been esteemed. In particular the influence of an appropriate equation for k=k(T) (specific heat ratio vs. temperature) which describes the variations of gases thermodynamic properties with the mean temperature inside the cylinder has been evaluated. This equation has been calculated by new V order Logarithmic Polynomials (VoLP), fitting experimental gases properties through the least square methods.

Fire Characteristics of Flaming and Smoldering Combustion of Wood Combustibles Considering Thickness (목재 가연물의 두께에 따른 화염연소와 훈소상태에서의 화재특성)

  • Kim, Sung-Chan;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.67-72
    • /
    • 2015
  • A series of fire tests was conducted to examine the fire characteristics of flaming and smoldering combustion of engineered wood products, which have been widely used for furniture and finishing materials in buildings. The engineered wood products of MDF, plywood, and chipboard were ignited by a radiant cone heater with incident heat flux of $50kW/m^2$. During the fire test, key parameters representing the fire characteristics such as the heat release rate, yield rate of combustion product, and effective heat of combustion were quantified in terms of thickness. The tests show two peak points of HRRPUA due to lateral fire propagation in the initial stage, followed by later fire penetration through the specimen thickness. The mass loss rate of flaming combustion was 5 times higher than that of smoldering combustion, while the CO yield rate of smoldering combustion was 10 times higher than that of flaming combustion. This study can contribute to the understanding of fire behavior of wood combustibles and provide useful data for fire analysis.

Estimation method of heat flux at tube bank exposed to high temperature flue gas in large scale coal fired boilers (보일러 내부 고온가스에 노출된 전열 튜브에서의 열유속 평가 방법)

  • Jung, Jae-Jin;Song, Jung-Il
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.259-264
    • /
    • 2009
  • Most of the fossil power plants firing lower grade coals are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. The poor combustion conditions are directly related to the gas flow deviation in upper furnace and convection tube-bank but a less reported issue related to in large-scale oppose wall fired boilers. In order to develop a on-line combustion monitoring system and suggest an alternative heat flux estimation method at tube bank, which is very useful information for boiler design tool and blower optimizing system, field test was conducted at operating power boiler. During the field test the exhaust gases' temperature and tube metal temperature were monitored by using a spatially distributed sensors grid which located in the boiler's high temperature vestibule region. At these locations. the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. Test results showed that the flue gas monitoring method is more proper than metal temperature distribution monitoring for real time combustion monitoring because tube metal temp. distribution monitoring method is related to so many variables such as flue gas, internal flow unbalance, spray etc., Heat flux estimation at the tube bank with flue gas temp. and metal temp. data can be alternative method when tube drilling type sensor can't able to use.

  • PDF

Numerical Study of Methane-hydrogen Flameless Combustion with Variation of Recirculation Rate and Hydrogen Content using 1D Opposed-flow Diffusion Flame Model of Chemkin (Chemkin 기반의 1차원 대향류 확산 화염 모델을 활용한 재순환율 및 수소 함량에 따른 메탄-수소 무화염 연소 특성 해석 연구)

  • Yu, Jiho;Park, Jinje;Lee, Yongwoon;Hong, Jongsup;Lee, Youngjae
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.238-248
    • /
    • 2022
  • The world is striving to transition to a carbon-neutral society. It is expected that using hydrogen instead of hydrocarbon fuel will contribute to this carbon neutrality. However, there is a need for combustion technology that controls the increased NOx emissions caused by hydrogen co-firing. Flameless combustion is one of the alternative technologies that resolves this problem. In this study, a numerical analysis was performed using the 1D opposed-flow diffusion flame model of Chemkin to analyze the characteristics of flameless combustion and the chemical reaction of methane-hydrogen fuel according to its hydrogen content and flue gas recirculation rate. In methane combustion, as the recirculation rate (Kv) increased, the temperature and heat release rate decreased due to an increase in inert gases. Also, increasing Kv from 2 to 3 achieved flameless combustion in which there was no endothermic region of heat release and the region of maximum heat release rate merged into one. In H2 100% at Kv 3, flameless combustion was achieved in terms of heat release, but it was difficult to determine whether flameless combustion was achieved in terms of flame structure. However, since the NOx formation of hydrogen flameless combustion was predicted to be similar to that of methane flameless combustion, complex considerations of flame structure, heat release, and NOx formation are needed to define hydrogen flameless combustion.

The Experimental Study for Heat Transfer and Combustion Characteristics of Gaseous Impinging Jet Premixed Flame (예혼합 화염이 벽면에 충돌시 열전달 및 연소특성에 관한 실험적 연구)

  • 정은규;조경민;김호영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.1-10
    • /
    • 1996
  • In the present study, the structure and the characteristics of gaseous premixed flame impinging normal to the flat plate have been investigated experimentally. For the examination of the heat transfer and combustion characteristics, measurements of temperature, direct and schlieren photography were performed. The results of present study show that the length of inner flame becomes smaller as distance from nozzle exit to plate decrease. The width of flame becomes larger as air-fuel ratio decreases. The smaller Reynolds number at nozzle exit and the smaller distance from nozzle exit to plate lead to the higher heat transfer rate in the region of center of plate. As the air-fuel ratio decreases, the heat transfer at plate with moderate rate occurs on wide region.

  • PDF

A study on the heat transfer characteristics of gas-radiative medium into a high temperature generator of an absorption refrigerator (흡수식 냉동기 고온재생기 내의 가스복사체 열전달 특성에 관한 연구)

  • Jung, Dae-In;Kim, Yong-Mo;Bae, Suk-Tae
    • Solar Energy
    • /
    • v.18 no.1
    • /
    • pp.81-89
    • /
    • 1998
  • In this paper an experimental was done to design combustion chambers which is required radiation strength of high temperature generator of absorption rigerator. Partiqularly, in combustion chamber radiative mediums were set and basic experiments were done according to its size by radiation strength and effects of heat transfer promotion. The results are as follows : 1) When radiative mediums were set in small combustion furnace burning nonframely radiative heat transfer was effected. 2) In case that area ratio($A/A_o$) of radiative medium is 0.82 or over, temperature fluctuation effects of furnace inside were not nearly. 3) In experimental boundary heat transfer effects were 1.8 times by setting up radiative medium. Specially, $q/{\Delta}T$ values of furnace inside were uniformed nearly by setting up radiative mediums.

  • PDF