• Title/Summary/Keyword: Combustion efficiency

Search Result 1,238, Processing Time 0.022 seconds

Adverse Effects of Kerosene Cleaning on the Formation of DNA Adducts in Skin and Lung of Mice Dermally Exposed to Used Gasoline Engine Oil (피부에 폭로된 폐가솔린엔진오일의 표적장기 DNA adducts형성과 케로신의 세척효과에 관한 연구)

  • Lee, Jin Heon;Talaska, Glenn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.2
    • /
    • pp.289-295
    • /
    • 1998
  • Used gasoline engine oils(UGEO) are carcinogenic in long term studies and capable of increasing the number of carcinogen-DNA adducts in short term studies when dermally applied to mice. The carcinogenic risk of UGEO has been attributed to the concentration of polycyclic aromatic hydrocarbons(PAH) which accumulate in the lubricating system during the combustion of gasoline. When dermally exposed to UGEO, the use of hand cleanser was commonly recommended for removing it. But generally workers who dermally exposed oils, use kerosene as cleaner which make skin trouble. During this study, female mice aged 4-6 weeks were utilized to evaluate the efficiency of kerosene, as solvent-based cleanser, following dermal exposure to UGEO. DNA adduct were detected at skin and lung tissues by using the $^{32}P$-postlabeling method. Washing with cleansers were done at two different interval times following dermal application of UGEO. The total DNA adducts in skin and lung tissues were statistically significantly increased in positive control groups, and of which the total adduct level in skin tissues was statistically significant higher than those in lung tissues(p=0.005). When washing kerosene, the DNA adduct level in skin tissues was statistically significantly decreased(p=0.0001). But DNA adducts in lung tissue was statistically increased(p=0.0039), and that washed at 8hr post exposure was more severly increase(p<0.05). The slope of regression between DNA adducts of lung between skin tissues was 1.0802. In conclusion, skin cleaning with kerosene facilitates passage of carcinogens to the lungs of animals dermally treated with used gasoline engine oils(UGEO).

  • PDF

A Study on the Torsional Vibration Characteristics of Super Large Two Stroke Low Speed Engines with Tuning Damper

  • Barro Ronald D;Kim Sang-Hwan;Lee Don-Chool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.776-785
    • /
    • 2006
  • Ship builder's requirement for a higher power output rating has lead to the development of super large two stroke low speed diesel engines. Usually a large-sized bore ranging from 8-14 cylinders, this engine group is capable of delivering power output of more than 100,000 bhp at maximum continuous rating. Other positive aspects of this engine type include higher thermal efficiency, reliability, durability and mobility. This all playa vital role in meeting the propulsion requirement of vessels, specifically for large container ships, of which speed is a primary concern to become more competitive. Consequently, this also resulted in the modification of engine parameters and new component designs to meet the consequential higher mean effective pressure and higher maximum combustion pressure. Even though the fundamental excitation mechanism unchanged, torsional vibration stresses in the propulsion shafting are subsequently perceived to be higher. As such, one important viewpoint in the initial engine design is the resulting vibration characteristic expected to prevail on the propulsion shafting system(PSS). This paper investigated the torsional vibration characteristics of these super large engines. For the two node torsional vibration with a nodal point on the crankshaft, a tuning damper is necessary to reduce the torsional stresses on the crankshaft. Hence, the tuning torsional vibration damper design and compatibility to the shafting system was similarly reviewed and analyzed.

  • PDF

An Experimental Study on Annulus Muffler of Automobile (자동차용 환상형 소음기에 관한 실험적 연구)

  • Kim, Byoung-Sam;Song, Kyu-Keun;Sim, Sang-Cherl;Cheong, Byeong-Kuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.217-222
    • /
    • 2006
  • Internal combustion engine is the main source of environmental pollutants and therefore advanced technology is required to reduce harmful elements from the exhaust gases all over the world. Especially, when the exhaust gas is released front the automotive muffler, exhaust noise has many bad influence on the surrounding environment. In order to reduce the exhaust noise, it is necessary that automotive muffler must be designed for best exhaust efficiency. The sound insulation room was installed for the analysis of an acoustics characteristics of the noise from automotive muffler, in this study. Exhaust gas noise, noise distribution characteristics, pressure and temperature of exhaust gas were investigated with the change of annulus temperature of air cooled annulus automotive muffler and cooled annulus automotive muffler. The following results were obtained with this study. From the frequency analysis of automotive muffler, high noise distribution was observed in the range $100{\sim}2000Hz$. It means that the noise in this range has an dominate influence for the overall noise. Noise reduction of automotive muffler was affected by the temperature of annulus. It is caused the result that the high temperature and pressure of exhaust gas are changed lower by the drop of annulus temperature. The tendencies of noise, the temperature and pressure of exhaust gas are similar to the performance curve of engine. Exhaust gas pressure is determined by the r.p.m. of engine and affected by the cooling performance of automotive muffler.

  • PDF

Performance Prediction of Heat Regenerators with using Spheres: Relation between Heat Transfer and Pressure Drop (구형 축열체를 사용한 축열기의 성능예측: 압력손실과 열전달의 관계)

  • 조한창;조길원;이용국
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.35-41
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of heat of exhaust gaset. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of heat regenerator with spherical particles, was numerically simulated to evaluate the heat transfer and pressure drop and thereby to suggest the parameter for designing heat regenerator. It takes about 7 hours for the steady state of the flow field in regenerator, in which heat absorption of regenerative particle is concurrent with the same magnitude of heat desorption. The regenerative particle experiences small temperature fluctuation below 10 K during the reversing process. The performance of thermal flow in heat regenerator varies with inlet velocity of exhaust gas and air, configuration of regenerator (cross-sectional area and length) and diameter of regenerative particle. As the gas velocity increases, the heat transfer between gas and particle enhances and with the increase the pressure losses. As particle diameter decreases, the air is preheated higher and the exhaust gases are cooled more with the increase of pressure losses.

A Study on the Performance Improvement in a V8 Type Turbocharged Intercooler D.I. Diesel Engine (V8형 터보차져 인터쿨러 직접분사식 디젤기관의 성능개설에 관한 연구)

  • 석동현;윤준규;차경옥
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.118-127
    • /
    • 2004
  • The purpose of this study is experimentally to analyze that intake port swirl, injection system and turbocharger have an effect on the engine performance and the emission characteristics in a V8 type turbocharged intercooler D.I. diesel engine of the displacement 16.7ι, and to suggest the improvement of engine performance. Generally to enhance engine power, TCI diesel engine is put to practically use turbo-charged intercoler in order to increase boost efficiency which is cooled boost air. As results of considering the factors of the intake port of swirl ratio 2.25, compression ratio 17.5, re-entrant 8.5$^{\circ}$ combustion bowl, nozzle hole diameter ${\Phi}$0.33*3+${\Phi}$0.35*2, nozzle protrusion 3.18mm, injection timing BTDC 12$^{\circ}$CA and turbo charger (compressor 0.6A/R+46Trim, turbine 1.0A/R+57Trim) is the best in the full range of operating in the engine performance and the exhaust characteristics of NO$\_$x/ concentration. Therefore their factors are appropriated as intake system, injection and turbocharger system.

Study of Air Flow Effects on Heat Characteristics of Warm Needle Acupuncture (온침 열특성의 기류 영향에 관한 연구)

  • Kim, Jung-Wo Roy;Lee, Hye-Jung;Yi, Seung-Ho
    • Korean Journal of Acupuncture
    • /
    • v.27 no.4
    • /
    • pp.35-47
    • /
    • 2010
  • Objectives : To characterize the thermal properties of traditional warm needle and new warm needle with various air flows as an important environmental factor and to suggest the necessity of maintaining suitable environment of clinics to maximize their efficacy. Methods : We measured the temperature characteristics of traditional moxa warm needle and new moxa charcoal warm needle by applying an automatic temperature acquisition system with thermocouples while external various air flows were supplied. Temperatures of two positions at the needle body were measured while a moxa cone burned. Typical temperature characteristics like peak temperature, duration, curve shape and the efficiency of the heat stimuli by heat amount analysis were executed. Results : Both warm needles showed similar temperature curve with an increase in the air flow. Peak temperature and duration of effective heat decreased with the air flow, as shown in indirect moxibustion on garlic. The temperature change pattern by the air flow became more apparent when the total combustion heat was compared with the effective heat. The values from two positions on the needle body were significantly different, showing a distance dependency from the heat source of warm needle acupuncture. Conclusions : Thermal properties of warm needle acupuncture was observed variously with surrounding air flow of 0.0 - 0.7 m/s. It emphasized the importance of environmental control as well as the warm needle itself such as heat source and needle. The latter has already been known to deliver designated heat to subjects. It also indicated the importance of education and skill of the practitioners of warm needle acupuncture.

Synthesis of Nanoporous F:SnO2 Materials and its Photovoltaic Characteristic (나노 다공질 FTO 제작 및 광전변환특성 고찰)

  • Han, Deok-Woo;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.176-181
    • /
    • 2009
  • In this work, a new type of DSCs based on nanoporous FTO structure is being developed for research aimed at low-cost high-efficiency solar cell application. The nanoporous FTO materials have been prepared through the sol-gel combustion method followed by thermal treatment at $450{\sim}850[^{\circ}C]$. The properties of the nanoporous FTO materials were investigated by IR spectra, BET and TEM analyses, and the photovoltaic performance of the prepared DSCs were examined. It can be seen from the result that the nanoporous FTO exhibited good transparent conductive properties, well suited for DSCs application.

Characteristics of Partial Oxidation Reforming with Various Sorts of Hydrocarbon Fuel (연료의 종류에 따른 부분산화 반응 특성에 관한 연구)

  • Park, Cheol-Woong;Choi, Young;Oh, Seung-Mook
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.46-52
    • /
    • 2009
  • Hydrogen can extend the lean misfire limit to a large extent when it is mixed with conventional fuels for an internal combustion engine. This study is about fuel reforming to produce hydrogen enriched gas as a fuel for engine. Especially gasoline, which consists of numerous hydrocarbon fuels, considered as source of reformed gas. Various hydrocarbons, including commercial fuel were reformed and potentialities of reformed gas on vehicles were accessed. The reforming efficiency and hydrogen yield were observed. Maximum hydrogen yield were found with different gas hourly space velocity(GHSV) and O2/C ratio of reforming conditions.

  • PDF

A Study on Commercialization Feasibility of HCNG Engine in Emissions Characteristics (HCNG 엔진의 배출가스 특성에 따른 상용화 타당성 연구)

  • Park, Cheolwoong;Kim, Changgi;Choi, Young;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Using natural gas-hydrogen blended fuel (HCNG) in a heavy duty vehicle is regarded as an alternative to meet reinforced emission regulation compared to a recent direct injection (DI) diesel engine. Hydrogen can lead stable lean combustion even under leaner mixture condition than natural gas, so that improving not only thermal efficiency but also $NO_x$ emissions. In the present study, the feasibility of HCNG engine's commercialization was accessed with HCNG fuel (30% $H_2$ and 70% natural gas) in aspect to the reliability and possibility to reduce $NO_x$ emissions by the level of EURO-VI under various operating conditions.

EFFECT OF VALVE TIMING AND LIFT ON FLOW AND MIXING CHARACTERISTICS OF A CAI ENGINE

  • Kim, J.N.;Kim, H.Y.;Yoon, S.S.;Sa, S.D.;Kim, W.T.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.687-696
    • /
    • 2007
  • To increase the reliability of auto-ignition in CAI engines, the thermodynamic properties of intake flow is often controlled using recycled exhaust gases, called internal EGR. Because of the internal EGR influence on the overall thermodynamic properties and mixing quality of the gases that affect the subsequent combustion behavior, optimizing the intake and exhaust valve timing for the EGR is important to achieve the reliable auto-ignition and high thermal efficiency. In the present study, fully 3D numerical simulations were carried out to predict the mixing characteristics and flow field inside the cylinder as a function of valve timing. The 3D unsteady Eulerian-Lagrangian two-phase model was used to account for the interaction between the intake air and remaining internal EGR during the under-lap operation while varying three major parameters: the intake valve(IV) and exhaust valve(EV) timings and intake valve lift(IVL). Computational results showed that the largest EVC retardation, as in A6, yielded the optimal mixing of both EGR and fuel. The IV timing had little effect on the mixing quality. However, the IV timing variation caused backflow from the cylinder to the intake port. With respect to reduction of heat loss due to backflow, the case in B6 was considered to present the optimal operating condition. With the variation of the intake valve lift, the A1 case yielded the minimum amount of backflow. The best mixing was delivered when the lift height was at a minimum of 2 mm.