• Title/Summary/Keyword: Combustion condition

Search Result 1,152, Processing Time 0.028 seconds

A Study on Thermo-flow Characteristics Analysis of Electric Water Pump (전동 워터펌프의 열유동 특성 해석에 관한 연구)

  • Kim, Sung-Chul;Song, Hyeong-Geun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.95-101
    • /
    • 2012
  • An electric water pump for engine cooling system has an advantage which particularly in the cold start, the use of the electric water pump saves fuel and leads to a corresponding reduction in emissions. The canned type electric water pump without mechanical sealing elements was selected to meet the requirements for operational reliability and life. However, the electric water pump for internal combustion engine generates much more heat loss than for hybrid electric vehicle since it is operated by the electric power of high current and low voltage. In this study, the fluid flow and thermal characteristics of the canned type electric water pump as an inverter integrated water pump has been investigated under the effects of heat generation. The analysis conditions such as outdoor air temperature of $125^{\circ}C$, water pump speed of 6000 rpm, coolant temperature of $106^{\circ}C$ and coolant flow rate of 120 L/min was used as a standard condition. Therefore, flow fields and temperature distribution inside the water pump were obtained. Also, we checked the feasibility of the canned type for the electric water pump in comparison with the mechanical seal type.

Study on the flickering behavior of propane/air and methane/air premixed flame confined in a tube (관내 프로판/공기와 메탄/공기 화염의 펄럭임 현상에 대한 연구)

  • Guahk, Young-Tae;Lee, Dae-Keun;Oh, Kwang-Chul;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.26-31
    • /
    • 2006
  • Flickering behaviors of lean premixed flame of propane/air and methane/air flame anchored by a pilot flame in a tube were investigated. Unsteady behaviors of the flame were monitored by a high speed ICCD camera and the flickering frequency was defined as the number of flame curvatures passing a fixed spatial point in a second. Unlike previous studies in which flames are in open condition so that the flickering mechanism is an unstable interaction of hot buoyant products with the ambient air, flames in this study are surrounded by a tube which means they are not open to ambient air, so that there is no interaction between hot buoyant products and ambient air. Despite the fact, there exists flickering phenomena and the flickering frequency ranges from 10 Hz to 50 Hz which is wider compared to previous studies. We relate the flickering mechanism to flame-generated vorticity and analytic solution for locally approximated flow is used. As a result, the relationship between flickering wavelength and dimensionless vorticity is acquired and the cause of higher range of flickering frequency is explained.

  • PDF

The Implementation of high temperature displacement sensors and sensors drive system for Air-preheater (공기예열기를 위한 고온용 변위센서 및 센서드라이브 시스템 구현)

  • Cho, Hyang-Duck;Kim, Woo-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.453-458
    • /
    • 2011
  • Air preheater uses the waste heat of the gas which burnt from the boiler from the thermal power plant. Air preheater it is established in the exit of the boiler follows in change of temperature combustion gas and the vibration which it follows in thermal expansion and contraction occurs. Air preheater with ruse the gas the seal the place where it includes a gap in the structure which it does, the vibration which it follows in change of temperature fluctuates the displacement of gap, fluctuation of the leakage quantity which occurs from gap there is a possibility of decreasing an effect to system. Part system it will be able to control the interval of gap in order, control mechanism about under establishing the place where it does the gap control actively, measures a gap the displacement sensor for is necessary. Like this displacement sensor the condition must do continuous running from atmosphere of high temperature was demanded all. This paper investigates the implementation instance of hazard existing which implement the high temperature displacement sensor, it analyzes, produces the result which it examines a model, it was a presentation. These results with the fact that it will contribute in the research for the implementation and a localization of the high temperature displacement sensor and advanced air preheater.

  • PDF

Gasification and Pyrolysis Technology for the Treatment of Plastics Waste (플라스틱 폐기물의 건류 및 열분해)

  • Ghim, Young Sung
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.201-206
    • /
    • 1992
  • Annual amount of plastics waste including rubber and leather waste, generated in 1990 was about 2,600,000 tons. Amount of generation of plastics waste has rapidly increased, but fractions of recycling and incineration have gradually decreased. Recently, two-stage incinerator, consisting of gasifier and gas combustor, draws much attention in Korea. Plastics are gasified in the starved air condition in the gasifier and produced gas is fired in the combustor. Combustion of produced gas is much easier than that of solid plastics, and produces a little pollutants. Standardzation of technology and process automation are still needed, but this incineration technology is in the commercial stage. Next topic concerned with this two-stage incineration will be how to treat complex plastics waste including toxic substances generated from automobiles and household appliances. Pyrolysis, realized by indirect heating in inert atmosphere, can provide high-quality products with minimum emissions. Many plastics are easily decomposed into oil in pyrolysis conditions, which can be utilized as chemical feedstocks, or gasoline or kerosene depending on feed materials and operating conditions. This has been demonstrated in several pilot-scale tests performed in Japan, Germany, etc. Easy removal of HCl from PVC is one of the most decisive merits of pyrolysis process. But in general, further efforts should be made for the process to obtain marketability. The future of pyrolysis process depends on public concern about environmental problems and oil prices.

  • PDF

Measurement of acoustic impedance of porous woven hoses in engine intake systems in the presence of mean flow (유체의 흐름이 있는 엔진 흡기계용 직조관의 음향 임피던스 측정 및 전달손실 예측)

  • 이정권;박철민
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.996-1000
    • /
    • 2002
  • A porous tube, comprised of a resin-coated woven fabric has recently been used as an effective component for use in intake systems of internal combustion engines to reduce the intake roaring. For the prediction of the acoustic performance of an engine intake system with a porous woven hose, the acoustic wall impedance of the hose must be known. Because of its peculiar acoustical and structural characteristics, the accurate measurement of the wall impedance ofa porous woven hose is not easy. A new measurement technique is proposed herein, that is valid over the low to mid frequency ranges. The acoustics impedance is inversely estimated from an overdetermined set of measured pressure transmission coefficients for specimens of different lengths and the reflection coefficient of end termination. The method involves only one measurement, and, as a result, it is very simple. The measured TL for samples with arbitrary conditions, arbitrary porous frequency, arbitrary length, and arbitrary mean flow condition, are in reasonably good agreement with values predicted from curve-fitted impedance data.

  • PDF

2D Heat Transfer Model for the Prediction of Temperature of Slab in a Direct-Fired Reheating Furnace (가열로 내 슬랩의 온도 예측을 위한 2차원 열전달 모델)

  • Lee Dong-Eun;Park Hae-Doo;Kim Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.950-956
    • /
    • 2006
  • A mathematical heat transfer model for the prediction of heat flux on the slab surface and temperature distribution in the slab has been developed by considering the thermal radiation in the furnace and transient conduction governing equations in the slab, respectively. The furnace is modeled as radiating medium with spatially varying temperature and constant absorption coefficient. The slab is moved with constant speed through non-firing, charging, preheating, heating, and soaking zones in the furnace. Radiative heat flux which is calculated from the radiative heat exchange within the furnace modeled using the FVM by considering the effect of furnace wall, slab, and combustion gases is applied as the boundary condition of the transient conduction equation of the slab. Heat transfer characteristics and temperature behavior of the slab is investigated by changing such parameters as absorption coefficient and emissivity of the slab. Comparison with the experimental work shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace.

Effect of a Multi Air-staged Burner on NOx Formation and Heat Transfer in Furnace Adopted the Reburning Process (재연소 과정을 적용한 연소로에서 공기 다단 연소기의 NOx 발생 및 열전달에 대한 효과)

  • Kim, Hyuk-Su;Baek, Seung-Wook;Lee, Chang-Yeop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.842-849
    • /
    • 2006
  • An experimental study has been conducted to investigate the effects of a multi air-staged burner on NOx formation and heat transfer in a 15kW large-scale laboratory furnace adopted the reburning process. The reburn fuel as well as burnout air was injected from each nozzle attached at the wall of the cylindrical furnace. Fuel in both main burner and reburn nozzle was LPG (Liquefied Petroleum Gas). The paper reports the influences on NOx reduction of reburn fuel fraction in reburning zone. Temperature distribution inside the overall region as well as total heat flux at the wall of the furnace has been measured to examine the heat transfer characteristics due to the reburning process. For comparison, the reburning effects were examined for a combustor with two types of burner; a regular single staged burner and a multi-air staged burner. A gas analysis was also performed to evaluate an appropriate condition for NOx emission in a primary zone for the excess air ratio of 1.1. As a result, combustion efficiency expected to become more efficient due to the reduction of heat loss in burnout zone decrease when multi air-staged burner in furnace adopted reburning technology was used.

The Performance Analysis of Otto Cycle Engine by Thermodynamic Second Law (오토 사이클 기관의 열역학 제 2법칙적 성능 해석)

  • 김성수;노승탁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.94-102
    • /
    • 2001
  • The thermodynamic second law analysis, which means available energy or exergy analysis, for the indicated performance of Otto cycle engine has been carried out. Each operating process of the engine is simplified and modeled into the thermodynamic cycle. The calculation of the lost work and exergy through each process has been done with the thermodynamic relations and experimental data. The experimental data were measured from the test of single cylinder Otto cycle engine which operated at 2500 rpm, WOT(Wide Open Throttle) and MBT(Minimum advanced spark timing for Best Torque) condition with different fuels: gasoline, methanol and mixture of butane-methanol called M90. Experimental data such as cylinder pressure, air and fuel flow rate, exhaust gas temperature, inlet gas temperature and etc. were used for the analysis. The proposed model and procedure of the analysis are verified through the comparison of the work done in the study with experimental results. The calculated results show that the greatest lost work is generated during combustion process. And the lost work during expansion, exhaust, compression and induction process follows in order.

  • PDF

Testing a Commercial Gas Engine using Synthetic Biogas (합성 바이오가스를 이용한 상용 가스엔진 발전기의 구동 특성)

  • Shim, Jae-Hoon;Hong, Seong-Gu;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.592-597
    • /
    • 2005
  • Biogas is widely accepted as one of renewable energy. Raw biogas can be used in internal combustion engines either spark ignition or diesel engines. Since the gas has relatively low calorific values, engine power also is lower than rated power values. Modified engines or biogas-specific engines have been utilized in order to increase efficiency. Recently, gas engine/generators are provided for various purposes. They are mostly for LPG or natural gas. When biogas is fueled to the gas engines, de-rating is inevitable due to its lower calorific values. Meanwhile, massively produced commercial gas engines are more competitive in terms of initial investment for engines, compared to biogas-specific engines. Then, the characteristics of the commercial engine and power generation should be understood for better operation. A 5kW gas engine/generator(natural gas) was tested for determining an allowable maximum concentration of $CO_2$ in synthetic biogas, with respect to engine stating, power generation. Experimental results indicated that about 65% of methane concentration is required to start the gas engine. At this condition, the power generated was about 3 kW. It is about 60% of the nominal power, which is similar to the ratio of calorific values.

  • PDF

Fabrication of SiCN microstructures for super-high temperature MEMS using PDMS mold and its characteristics (PDMS 몰드를 이용한 초고온 MEMS용 SiCN 미세구조물 제작과 그 특성)

  • Chung, Gwiy-Sang;Woo, Hyung-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.53-57
    • /
    • 2006
  • This paper describes a novel processing technique for fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for super-temperature MEMS applications. PDMS (polydimethylsiloxane) mold is fabricated on SU-8 photoresist using standard UV photolithographic process. Liquid precursor is injected into the PDMS mold. Finally, solid polymer structure is cross-linked using HIP (hot isostatic pressure) at $400^{\circ}C$, 205 bar. Optimum pyrolysis and annealing conditions are determined to form a ceramic microstructure capable of withstanding over $1400^{\circ}C$. The fabricated SiCN ceramic microstructure has excellent characteristics, such as shear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}{\Omega}$) and BDV (min. 1.2 kV) under optimum process condition. These fabricated SiCN ceramic microstructures have greater electric and physical characteristics than bulk Si wafer. The fabricated SiCN microstructures would be applied for supertemperature MEMS applications such as heat exchanger and combustion chamber.