• Title/Summary/Keyword: Combustion Mechanism

Search Result 474, Processing Time 0.022 seconds

Generation of a skeletal mechanism of coal combustion based on the chemical pathway analysis

  • Ahn, Seongyool;Watanabe, Hiroaki;Shoji, Tetsuya;Umemoto, Satoshi;Tnno, Kenji
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.5-7
    • /
    • 2014
  • A skeletal mechanism of coal combustion was derived from a detailed coal combustion kinetic mechanism through an importance analysis of chemical pathways. The reduction process consists of roughly two parts. The first process is performed based on a connectivity analysis between species. In this process, DRGEPSA is chosen for reduction process. Strongly connected species and related reactions from the important species set as start species by the operator are sorted into the reduced mechanism. About 70% of species and reactions can be removed with a limited accuracy loss. Subsequently the second reduction process, CSP, is performed. This method focuses on an importance of each reaction and can reduce a volume of mechanism appropriately. Through these analyses, a skeletal mechanism is generated that is including 65 species and 150 reactions. The generated skeletal mechanism is verified through a comparison with the detailed mechanism in the homogeneous reactor model of CHEMKIN-PRO under wide range of conditions. The generated mechanism can give an advantage in the analysis of coal combustion characteristics in detail in large scale simulations such as LES and DNS.

  • PDF

Combustion Characteristics of Diesel Spray Impinging on a Glow Plug in RCEM (급속압축팽창장치에서의 글로우 플러그 충돌분무의 연소 특성)

  • Kim, C.H.;Kim, J.W.;Park, K.H.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.22-34
    • /
    • 1997
  • Circumstances require improving diesel engine, and many studies have been done in constant volume chamber(CVC). Because the combustion mechanism of a diesel engine has many difficulties with non-homogeneous nature, there has been a limitation to analyzing the combustion mechanism with CVC. Studies are often given in a real engine, but also it has difficulties in modifying configuration of combustion chamber etc. To get more easy way for mote engine-like test, a rapid compression mechanism has been introduced. This study addresses to designing a rapid compression expansion machine(RCEM) driven by compressed air, and to applying it on IDI diesel combustion chamber which has a glow plug. RCEM is introduced first and its characteristics are tested, then spray/combustion characteristics of diesel spray impinging on a glow plug in RCEM combustion chamber are investigated. The results show active combustion in the system employing spray impinging on a glow plug so as to improve combustion efficiency.

  • PDF

The Combustion Mechanism of Tungsten-potassium Perchlorate-barium Chromate Delay power ($W/KClO_4/BaCrO_4$ 지연제의 연소 메카니즘)

  • Nakamura, Hidesugu;Akiyoshi, Miyako;Hara, Yasutake
    • Explosives and Blasting
    • /
    • v.18 no.1
    • /
    • pp.53-58
    • /
    • 2000
  • Thermal analysis, analysis of combustion residue and combustion characteristics measure ment such as burning rate or temperature were carried out to clarify the combustion mechanism of a tungsten- potassium perchlorate-barium chromate chromate delay powder. The results obtained are as follows. The main reaction of the delay powder of tungsten-potassium perchlorate-barium chromate is the oxidation of tungsten by potassium perchlorate. Barium chromate acts as a burning rate modifier, and the smaller the larger is the burning rate. Three types of delay composition used in this study show characteristic burning behavior. A stoichiomertric or a oxidizer-rich composition has a small linear burning rate. although it is has a large heat of combustion. On the other hand, a tungsten-excess or a fuel-rich composition with a small heat of combustion has a larger linear burning rate than the former, showing a small fractional oxidation of tungeten (below 10%) contained in the delay powder. From these results, a surface combustion mechanism is proposed for the combustion mechanism of this delay powder.

  • PDF

A Study on Combustion Visualizations and Radical Characteristics using Optically Accesible Engine (가시화엔진을 이용한 연소 및 라디칼 특성에 관한 연구)

  • Choi, Su-Jin;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.39-47
    • /
    • 1999
  • A combustion flame visualization system, which is used as an engine diagnostics tool, was developed in order to understand the combustion reaction mechanism in the development stage for S.I. engines. The measurement system consists of an I-CCD camera and a computer-aided image processing system. By using optically accessible engine system, the flame structure was analyzed from the acquired graylevel image and the direction of flame propagation (shape of flame) has been measured to understand combustion phenomena. And combustion radical which involves combustion information were measured. As a result, strong relation between combustion radicals intensity ratio and air excess ratio was found.

  • PDF

The Experimental study on the Flame Propagation Process of a Constant Volume Combustion Chamber (정적 연소실내에서 화염 전파 과정에 대한 실험적 연구)

  • Kim, Chun-Jung;Kang, Kyung-Koo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.121-130
    • /
    • 1999
  • It is necessary to measure pressure, temperature, chemical equilibrium and the shape of flame in order to understand the combustion process in a combustion chamber. In particular, the flame formulation and combustion process of divided combustion chamber are different from those of a single chamber, And the variable diameter of a jet hole can effect not only physical properties like ejection velocity, temperature and time of combustion but also a chemical property like the reaction mechanism. Accordingly temperature is one of the most important factors which influence the combustion mechanism. This paper observed shape of flame by using the schlieren photographs and measured the pressure in a combustion chamber and the reaching time of the flame by ion probe By doing these, we investigation the formulation of the flame and the process of propagation. These measurement methods can be advanced in understanding the combustion process and process and propagation of flame.

  • PDF

NO Emission Characteristics of Oxygen-Enriched Combustion with $CO_2$ Recirculation in Counterflow Diffusion Flame (대향류 화염에서 $CO_2$ 재순환 산소부화연소의 NO 배출 특성)

  • Park, June-Sung;Cho, Han-Chang;Park, Jeong
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.1
    • /
    • pp.28-37
    • /
    • 2007
  • Numerical study is conducted to grasp the flame structure and NO emissions for a wide range of oxy-fuel combustion (covering from air blown combustion to pure oxygen combustion) and for various mole fractions of recirculated $CO_2$ in $CH4-O_2/N_2/CO_2$ counterflow diffusion flames. Special concern is given to the difference of the flame structure and NO emissions between air blown combustion and oxy-fuel combustion w/o recirculated $CO_2$ and is also focused on chemical effects of recirculated $CO_2$. Air blown combustion and oxy-fuel combustion w/o recirculated $CO_2$ are shown to be considerably different in the flame structure and NO emissions. Modified fuel oxidation reaction pathways in oxygen-enriched combustion are provided in detail compared to those in air blown combustion w/o recirculated $CO_2$. The formation and destruction of NO through Fenimore and thermal mechanisms are also compared for air blown combustion and oxyegn-enriched combustion w/o recirculated $CO_2$, and the role of the recirculated $CO_2$ and its chemical effects are discussed. Importantly contributing reaction steps to the formation and destruction of NO are also estimated in oxygen-enriched combustion in comparison to air blown combustion.

  • PDF

DNSs of the Ignition of a Lean PRF/Air Mixture under RCCI/SCCI Conditions: A Comparative Study (RCCI/SCCI 조건하에서 희박 PRF/공기 혼합물의 점화에 관한 직접수치모사를 이용한 비교 연구)

  • Luong, Minh Bau;Yu, Kwang Hyeon;Yoo, Chun Sang
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.179-182
    • /
    • 2014
  • A comparative DNS study of the ignition characteristics of dual-fueled reactivity controlled compression ignition (RCCI) and stratification charge compression ignition (SCCI) is investigated using a 116-species reduced primary reference fuel (PRF) mechanism. In the RCCI combustion, two PRF fuels (n-heptane and iso-octane) with opposite autoignition characteristics are separatedly supplied and in-cylinder blended such that spatial variations in fuel reactivity, fuel concentration and temperature are achieved. In the SCCI combustion, however, just a single fuel (PRF50) is used such that only fuel concentration and temperature inhomoginieties are obtained. Because three factors, rather than only two as in SCCI combustion, govern the overall RCCI combustion, combustion timing and combustion duration or heat release rate of RCCI combustion are flexibly and effectively controlled. It is found that the overall RCCI combustion occurs much earlier and its combustion duration is longer compared to SCC combustionI. Moreover, the negative temperature coefficient (NTC) has a positive effect on enhancing RCCI combustion by inducing a shorter combustion timing and a longer combustion duration as a result of the occurrence of a predominant low-speed deflagration-combustion mode.

  • PDF

A Numerical Study of Combustion Characteristics for HCCI Engine with Detailed Diesel Surrogate Chemical Mechanism (Diesel Surrogate 상세 반응 기구를 이용한 HCCI 엔진의 연소 특성에 관한 수치해석 연구)

  • Lee, Won-Jun;Lee, Seung-Ro;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.2
    • /
    • pp.9-15
    • /
    • 2011
  • Homogeneous charge compression ignition(HCCI) is the best concept able to provide low NOx and PM in diesel engine emissions. This new alternative combustion process is mainly controlled by chemical kinetics in comparison with the conventional combustion in internal combustion engine. In this paper, combustion characteristics of HCCI engine with suggested diesel surrogate(heptane/toluene mixture fuel) reaction mechanism were numerically investigated by heptane/toluene mixture ratio and EGR ratio. As results, the ignition timing became faster with increasing of heptane, and an initial oxidation and the ignition timing of the mixture fuel were affected by heptane and toluene, respectively.

DRASTIC IMPROVEMENT OF THERMAL EFFICIENCY BY RAPID PISTON-MOVEMENT NEAR TDC

  • Moriyoshi, Y.;Sano, M.;Morikawa, K.;Kaneko, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.295-301
    • /
    • 2006
  • A new combustion method of high compression ratio SI engine was studied and proposed in order to achieve high thermal efficiency, comparable to that of CI engine. Compression ratio of SI engine is generally restricted by the knocking phenomena. A combustion chamber profile and a cranking mechanism were studied to avoid knocking with high compression ratio. Because reducing the end-gas temperature will suppress knocking, a combustion chamber was considered to have a wide surface at the end-gas region. However, wide surface will lead to large heat loss, which may cancel the gain of higher compression ratio operation. Thereby, a special cranking mechanism was adapted which allowed the piston to move rapidly near TDC. Numerical simulations were performed to optimize the cranking mechanism for achieving high thermal efficiency. An elliptic gear system and a leaf-shape gear system were employed in numerical simulations. Livengood-Wu integral, which is widely used to judge knocking occurrence, was calculated to verify the effect for the new concept. As a result, this concept can be operated at compression ratio of fourteen using a regular gasoline. A new single cylinder engine with compression ratio of twelve and TGV(Tumble Generation Valve) to enhance the turbulence and combustion speed was designed and built for proving its performance. The test results verified the predictions. Thermal efficiency was improve over 10% with compression ratio of twelve compared to an original engine with compression ratio of ten when strong turbulence was generated using TGV, leading to a fast combustion speed and reduced heat loss.

An Experimental Study on Combustion Instability Mechanism in a Dump Gas Turbine Combustor (모형 가스터빈 연소기내 연소불안정성에 대한 실험적 연구)

  • Lee, Youn-Joo;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.853-858
    • /
    • 2001
  • The knowledge of flame structure is essential for control of combustion instability phenomena. Some results of an experimental study on mechanism of naturally occurring combustion oscillations with a single dominant frequency are presented. Tests were conducted in a laboratory-scale dump combustor at atmospheric pressure. Sound level meter was used to track the pressure wave inside the combustor. The observed instability was a longitudinal mode with a frequency of $\sim341.8Hz$. Instability map was obtained at the condition of inlet temperature of $360^{\circ}C$, mean velocities of $8.5\sim10.8m/s$ and well premixed mixture. It showed that combustion instability was susceptible to occur in the lean conditions. In this study, unstable flame was observed from stoichiometric to 0.7 in overall equivalence ratio. At selected unstable conditions, phase-resolved OH chemiluminescence images were captured to investigate flame structure with various mean velocities. As mean velocity is increased, the flame grows and global heat release was changed. Due to these effects, combustion instability can be maintained at more lean air-fuel ratio. Also, these results give an insight to the controlling mechanism for an increasing heat release at maximum pressure.

  • PDF