• Title/Summary/Keyword: Combustion Characteristic Velocity

Search Result 96, Processing Time 0.025 seconds

Effect of Chamber Configuration on Combustion Characteristic Velocity of Full-scale Combustion Chamber (실물형 연소기의 형상에 따른 연소특성속도 비교)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.149-152
    • /
    • 2008
  • Effects of chamber configuration on combustion characteristic velocity of full-scale combustion chamber for 30-tonf-class liquid rocket engine were studied. The configurations of combustion chamber are ablative and channel cooling chamber (${\varepsilon}$=3.2) which have detachable mixing head, and single body regenerative cooling chamber which has nozzle expansion ratio of 3.5 and 12, respectively. The combustion chambers have chamber pressure of 53${\sim}$60 bar and propellant mass flow rate of 89 kg/s, and the injectors of all combustion chamber have recess number 1.0 and double-swirl characteristics. The hot firing test results at design point show that the combustion characteristic velocity of the regenerative cooling chamber which has nozzle expansion ratio of 12 is higher than that of other combustion chambers. The reasons for the above result are the increases of combustion pressure and enthalpy of kerosene which is heated due to cooling of the chamber wall before injection into the combustion field.

  • PDF

Performance Prediction of Combustion Chamber for 75 ton LRE through Firing Tests at Low Pressure (75톤급 액체로켓엔진 연소기 저압시험을 통한 연소성능 예측)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Lim, Byoung-Jik;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.66-70
    • /
    • 2010
  • The performance of 75 ton liquid rocket engine combustion chamber for a space launch vehicle was predicted through firing tests at low pressure. In low pressure tests of 75 ton LRE combustor chamber, the combustion characteristic velocity of 1750 m/sec and the specific impulse of 240 sec were obtained which are higher than the low pressure performance of 30ton combustion chamber. The combustion characteristic velocity of 1770 m/sec and the specific impulse of 278 sec at design point for 75 ton LRE combustion chamber were predicted by using the low/high pressure performance correlation of 30ton LRE combustion chamber.

  • PDF

Combustion Performance Results of Combustion Chamber for 30ton-f Class Liquid Rocket Engine (30톤급 액체로켓엔진 연소기 연소시험 성능결과)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Seo, Seong-Hyeon;Lim, Byoung-Jik;Ahn, Kyu-Bok;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.139-143
    • /
    • 2007
  • The overall results of combustion tests performed for a 30 tonf-class full-scale combustion chambers of a liquid rocket engine were described. The combustion chambers have chamber pressure of 53${\sim}$60 bar and propellant mass flow rate of 89 kg/so The combustion chamber is composed of mixing head, SUS baffle, baffle injector, ablative chamber, channel cooling chamber and regenerative cooling chamber. The test results show that the combustion characteristic velocity is in the range of 1673${\sim}$1730 m/sec and the specific impulse of the combustion chamber is in the range of 254${\sim}$263 sec. As the recess number of the injectors increases, the combustion characteristic velocity increases. And as the combustion characteristic velocity increases, the specific impulse of the combustion chamber also increases.

  • PDF

Flow Characteristic Analysis in Accordance with Geometrical Modification of Air Distribution Plate in Gasboiler Combustion Chamber (가스보일러 연소실 공기분배판의 기하학적 형상에 따른 유동특성 해석)

  • Kim, Jae-Jung;Son, Young-Gap;Chang, Seog-Weon;Ryu, Dong-Su
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.859-864
    • /
    • 2000
  • This paper reports a numerical flow characteristic analysis in gas boiler combustion chamber. The numerical results with simplification and assumptions were found within 30% of the experiment. A lot of geometrical modification has been invested in attempt to obtain the uniform flow in the combustion chamber exit. As a result, the velocity magnitude of the combustion chamber is relate with the hole size in air distribution plate. The velocity uniformity of the combustion chamber is relate with the number of holes and location in air distribution plate.

  • PDF

Combustion Test Results of Regenerative Cooling Combustor for 30 tonf-class Liquid Rocket Engine (30톤급 액체로켓엔진 연소기 재생냉각 연소시험 결과)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Lim, Byoung-Jik;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.133-137
    • /
    • 2008
  • Results of combustion tests performed for a regenerative cooling combustor of a 30 tonf-class liquid rocket engine were described. The combustion chamber has chamber pressure of 60 bar, propellant mass flow rate of 89 kg/s, and nozzle expansion of 12. The combustion chamber is composed of mixing head, baffle injector, and regenerative cooling chamber. The hot firing tests were performed at design and off-design points. The test results show that the combustion characteristic velocity is in the range of 1738${\sim}$1751 m/sec and the specific impulse of the combustion chamber is in the range of 253${\sim}$270 sec. The peak of combustion characteristic velocity and specific impulse for this combustor is shown at mixture ratio of 2.35 and 2.5, respectively.

  • PDF

Combustion Characteristics of Gas Generator for Liquid Rocket Engine (액체로켓엔진 가스발생기 연소특성)

  • Kim, Seung-Han;Han, Yeoung-Min;Moon, Il-Yoon;Lee, Kwang-Jin;Seol, Woo-Seok;Lee, Chang-Jin;Kim, Seung-Han
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.213-216
    • /
    • 2004
  • The results of combustion performance test of fuel-rich gas generator(GG) using LOx and kerosene as propellant at design and off-design point are described. The parameters used in this analysis are the average exit temperature($T_{GG}$) and the characteristic velocity($C^{\ast}$). The average gas temperature at the exit of gas generator is found to be a function of propellant O/F ratio. For the gas generator having residence time of 4msec or more, the effect of flame residence time and combustion chamber pressure on the exit temperature is not significant. The exit characteristic velocity is found to be linearly proportional to the gas temperature at the exit of gas generator.

  • PDF

Combustion Experiment Measurement Uncertainty for Hybrid Rocket Motor (하이브리드 로켓 모터에 대한 연소 실험 측정 불확도)

  • Kim, Soo-Jong;Moon, Hee-Jang;Kim, Jin-Kon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • In this study, the measurement uncertainty of combustion experimental system and experimental parameters for hybrid rocket were evaluated by B type evaluation method. The measurement uncertainty of all experimental parameters was lower than 3%. The highest value of expanded uncertainty was characteristic velocity efficiency with 2.83% and the expanded uncertainty of regression rate which is the design and performance parameter was indicated to 0.03%. These results shown that the reliability of hybrid combustion system was located within allowed limits.

Combustion Performance Characteristics of a High Pressure Sub-scale Liquid Rocket Combustor (고압 축소형 연소기의 연소 성능 특성에 관한 연구)

  • Kim, Jong-Gyu;Lee, Kwang-Jin;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.31-36
    • /
    • 2007
  • Combustion performance characteristics of subscale high-pressure combustor were investigated at 70 bar combustion pressure. All tests were successfully performed without any damage on the combustor. The mixing characteristics and distribution pattern of the injectors were found to have considerable influence on the combustion performance. The characteristic velocity of the combustor was higher in the injector with internal mixing than that of external mixing and in the injector with smaller mass flowrate. The pressure fluctuations at the propellant manifolds and the combustion chamber were measured to be less than 3% of the mean combustion pressure to meet the combustion stability criterion and to prove stable combustion characteristics of the combustor.

Basic Design of Combustion Chamber for 75 ton Liquid Rocket Engine (75톤급 액체로켓엔진 연소기 기본설계)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Seo, Seong-Hyeon;Kim, Seong-Ku;Ryu, Chul-Sung;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.125-129
    • /
    • 2009
  • The basic design of liquid rocket engine combustion chamber for a large space launch vehicle was described. It has vacuum thrust of 74.8 ton, vacuum specific impulse of 306.9 sec, chamber pressure of 60 bar, mass flow rate of 243.6 kg/s and combustion characteristic velocity of 1730 m/sec. The details of combustion performance and geometrical parameter were also given. The 75 ton combustion chamber consists of the combustor head with injector and the chamber/nozzle with regenerative cooling channels.

  • PDF

Combustion Characteristics of the Paraffin-Based Hybrid Rocket Fuel (파라핀계 하이브리드 로켓 연료의 연소 특성)

  • Kim, Soo-Jong;Cho, Jung-Tae;Kim, Gi-Hun;Kim, Hak-Chul;Woo, Kyong-Jin;Lee, Jung-Pyo;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.225-228
    • /
    • 2009
  • Combustion characteristics of the paraffin-based hybrid rocket fuel were compared with HDPE fuel. Regression rate of the pure paraffin wax was increased 12.1 times, but characteristic velocity was lower than HDPE. In case of paraffin fuel with 10%wt LDPE, regression rate was lower than pure paraffin wax, but regression rate compare with HDPE was increased 3.5 times and characteristic velocity was increased. According to these results, it was confirmed that blending of polymeric fuel improves combustion efficiency.

  • PDF