• Title/Summary/Keyword: Combustible materials

Search Result 160, Processing Time 0.036 seconds

A Study on Organic-Inorganic Hybrid Sound Absorbing Materials Using by Recycling Gypsum (재활용 석고 부산물을 이용한 유무기 하이브리드 흡음재 개발 연구)

  • Shin, Hyun-Gyoo;Jeon, Bo-Ram;Ha, Joo-Yeon;Jeon, Chan-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.481-487
    • /
    • 2017
  • The purpose of this study is to develop the hybrid sound-absorbing materials that is made from organic polyurethane sponge impregnated with inorganic binder solutions. The inorganic slurry which is made from ${\alpha}$-hemihydrate gypsum mixed with 60% water, and various additives including plasticizer are used as binder. The test specimens are prepared and tested for sound absorption performance by the impedance tube methods. From the test results, noise reduction coefficient(NRC) of development materials specimen bound by the inorganic binder slurry is 0.41. They are 2 times or more higher than commercial products specimens bound by organic materials only which have NRC values in the range of 0.14 to 0.28. The polyurethane sponge specimens impregnated with inorganic gypsum slurry binder have a good balance between performance and cost, and have proper properties in density, thermal conductivity, non-combustible, and absence of harmful substances as sound-absorbing internal boards for noise barrier wall. It is apparent that the good sound absorption materials can be produced according to the optimum mix design that is recommended from this study.

Thermal Insulation and Flame Retardant Properties of Cement Based Super Light-weight Inorganic Thermal Insulation using 100㎛ Grade Glass Bubble (100㎛급 글라스 버블 혼입 시멘트계 초경량 무기 단열재의 단열 및 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.642-649
    • /
    • 2021
  • Energy saving standard for buildings are strengthened, the application of exterior insulation finishing system and thickness of insulation materials are increasing. Most buildings with exterior insulation finishing system is applied organic insulating material. Organic insulating material have workability, economic feasibility, reduction in construction cost, and excellent thermal insulation performance. However, Organic insulating material is very vulnerable to heat, so when a fire occurs, rapid fire spread and toxic gas are generated, causing many casualties. Inorganic insulating material can be non-combustible performance, but it is heavy and has low thermal insulation performance. Mineral wool has higher thermal insulation performance than other types of inorganic insulating material, but mineral wool is disadvantageous to workability and vulnerable to moisture. Glass bubble are highly resistant to water and chemically stable substances. In addition, the density of the glass bubble is very low and the particles are spherical, fluidity is improved by the ball bearing effect. Glass bubbles can be used with cement-based ino rganic insulating material to impro ve the weight and thermal insulatio n perfo rmance o f cement-based inorganic insulation. This study produced a inorganic insulating materials were manufactured using cement-based materials and glass bubble. In order to evaluate the insulation performance and flame retardant performance of cement-based super light-weight inorganic insulating materials using with glass bubble, insulation performance or flame retardant and non-combustible performance were evaluated after manufacturing insulating materials using micro cement and two types of glass bubbles. From the test result, Increasing the mixing ratio of glass bubbles improved the insulation performance of cement-based super light-weight inorganic insulating materials, and when the mixing ratio of glass bubbles was 10%, it sho wed sufficient flame retardant and no n-co mbustible perfo rmance.

Low & Intermediate Level Radioactive Waste Vitrification Using Plasma Arc Melting Technology

  • Min Byeong-Yeon
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.482-496
    • /
    • 2003
  • effectiveness of the PAM graphite-electrode technology for the treatment of many types of low-level radioactive waste including : combustible material, solidified resins in cement, inorganic materials, steel, glass, and solidified boric acid cement. The objectives of PAM-200 evaluation were to verify that 1) the facility meets air emission regulations, 2) the facility can be safely operated when processing hazardous and radioactive materials and 3) satisfactory final waste forms can be produced. Results, derived from KAERI's(Korea Atomic Energy Research Institute) analyses for samples of vitrified product, scrubbing solution and offgas collected during test period, show that PAM-200 can treat radioactive wastes as well as hazardous wastes with toxic constituents and radionuclides contained in the offgas exiting from the stack to the environment controlled to be far lower than the limit regulated by air conservation law and atomic law.

A Study on the Temperature Analysis for Cable in Overload and Short of Low Voltage Wiring using Electro-Thermal FEA (전계-열계 유한요소해석을 이용한 저압 배선선로의 과부하 및 단락사고 발생시 전선의 온도해석에 관한 연구)

  • Oh, Hong-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.91-96
    • /
    • 2004
  • Overloading of electrical equipment results in excessive currents. As the heat developed in the cables is proportional to square of the current, they get overheated. The insulation on cables is generally made of materials which are damaged easily by excessive temperature. They may therefore lose their insulating properties and lead to short circuits. Since many insulating materials are combustible, they may even catch fire if the temperature rises to their ignition temperature. In this paper, we have simulated the thermal analysis for cable according to the value of current in a overload and a short with the cable of the L's company product(600 V, VV : Four Core) using the electro-thermal finite element method(Flux2D).

  • PDF

A Study on the Risk of Fire Caused by Sparks during Grinding Operation (그라인딩 작업 중 발생하는 불티의 화재 예방에 관한 연구)

  • Seong-En Kim;Geun-Chul Lee;Kyong-Jin Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.751-756
    • /
    • 2023
  • In this study, We investigated a fire case and performed an experiment to prevent fire from sparks that is generated during grinding operation. Before conduct the test, confirmed that the generating mechanism of fire-flakes in working grinder and the fire experiment was conducted using commonly tools, flammable materials in industrial field. in result, It could be measured scattering distance, temperature, ignition possibility by type of combustible materials. Based on the results of this study, We are expected to be used as basic data for fire prevention in grinding Industry.

A Study on the Flame Stability of Porous Ceramic Burner (다공성세라믹버너의 화염안정화에 관한 연구)

  • Lee, Do-Hyung;Yun, Bong-Seok
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.12-18
    • /
    • 2016
  • Typical boiler system consists of combustion chamber and heat exchanger in one housing, therefore the size of boiler system is large and the heat exchanging efficiency becomes low. At these boiler systems, because the combustible mixture fires as free flame in the combustion chamber, consequently the combusted hot gas heats the heat exchanger only as conductive and convective heat transfer. The present Porous Ceramic Burner concept is that combustion process is occurred at the gaps of the porous ceramic materials, and the heat exchanger is placed in the same porous materials. Therefore we can reduce the boiler size, and we can also use radiative heat transfer from ceramic material with conductive and convective heat transfer from combusted gas throwing the porous materials. The purpose of this study is to search the flame stability ranges at different fuel flow rate and excess air ratio burning in the $Al_2O_3$ ceramic balls. We found out the stable excess air ratio range on given combustion intensity. And we can get clean porous ceramic combustion results compared with free flame.

Comparison of H2, LNG, and LPG explosion characteristics in a limited space using CFD Simulation (CFD 시뮬레이션을 이용한 제한된 공간에서의 수소, LNG, LPG 폭발특성 비교)

  • Baek, Ju-Hong;Lee, Hyang-Jig;Jang, Chang Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.12-21
    • /
    • 2016
  • The demand for hydrogen is steadily increasing every year, and the facilities to produce and transfer hydrogen are being increased as well. Therefore, the possibility of a critical accident at hydrogen is expected to increase. Furthermore, the materials most likely to cause accidents at industrial sites are LPG 61%, hydrogen 12%, and LNG 10%, and the frequency of accidents due to these three combustible gases is relatively high. Thus, a CFD simulation was used to compute the explosion risk of danger-frequent combustible gases-hydrogen, LNG, and LPG-within a limited space, and the outcomes were compared and analyzed to review the risk of explosion of each gase within a limited space.

The characteristics of gasification for combustible waste

  • Na, Jae-Ik;Park, So-Jin;Kim, Yong-Koo;Lee, Jae-Goo;Kim, Jae-Ho
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.05a
    • /
    • pp.227-234
    • /
    • 2002
  • With the increasing environmental consideration and stricter regulations, gasification of waste is considered to be more attractive technology than conventional incineration for energy recovery as well as material recycling. The experiment for combustible waste mixed with plastic and cellulosic materials was performed in the fixed bed gasifier to investigate the gasification behavior with the operating conditions. Waste pelletized with a diameter of 2~3cm and 5cm of length was gasified at the temperature range of 1100~145$0^{\circ}C$. It was shown that the composition of H$_2$ was in the range of 30~40% and CO 15~30% depending upon oxygen/waste ratio. Casification of waste due to thermoplastic property from mixed plastic melting and thermal cracking shows a prominent difference from that of coal or coke. It was desirable to maintain the top temperature up to foot to ensure the mass transfer and uniform reaction through the packed bed. As the bed height was increased, the formation of H$_2$ and CO was increased whilst $CO_2$ decreased by the char-$CO_2$ reaction and plastic cracking. From the experimental results, the cold gas efficiency was around 61% and heating values of product gases were in the range of 2800~3200㎉/Nm3.

  • PDF

A Study on the Early Fire Detection by Using Multi-Gas Sensor (다중가스센서를 이용한 화재의 조기검출에 대한 연구)

  • Cho, Si Hyung;Jang, Hyang Won;Jeon, Jin Wook;Choi, Seok Im;Kim, Sun Gyu;Jiang, Zhongwei;Choi, Samjin;Park, Chan Won
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.342-348
    • /
    • 2014
  • This paper introduced a novel multi-gas sensor detector with simple signal processing algorithm. This device was evaluated by investigating the characteristics of combustible materials using fire-generated smell and smoke. Plural sensors including TGS821, TGS2442, and TGS260X were equipped to detect carbon monoxide, hydrogen gas, and gaseous air contaminants which exist in cigarette smoke, respectively. Signal processing algorithm based on the difference of response times in fire-generated gases was implemented with early and accurately fire detection from multiple gas sensing signals. All fire experiments were performed in a virtual fire chamber. The cigarette, cotton fiber, hair, polyester fiber, nylon fiber, paper, and bread were used as a combustible material. This analyzing software and sensor controlling algorithm were embedded into 8-bit micro-controller. Also the detected multiple gas sensor signals were simultaneously transferred to the personnel computer. The results showed that the air pollution detecting sensor could be used as an efficient sensor for a fire detector which showed high sensitivity in volatile organic compounds. The proposed detecting algorithm may give more information to us compared to the conventional method for determining a threshold value. A fire detecting device with a multi-sensor is likely to be a practical and commercial technology, which can be used for domestic and office environment as well as has a comparatively low cost and high efficiency compared to the conventional device.

A Study on Combustion Experiments of Color Nonwoven (칼라 부직포의 연소실험에 관한 연구)

  • Min, Se-Hong;Im, Sang-Bum
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.99-106
    • /
    • 2011
  • Experiments of Cone calorimeter test and Lift spread flame apparatus test are carried out in order to appraise fire hazard in color nonwoven used mostly on the spot in construction works. As the result, in color nonwoven combustibility is discovered not firing flame in surface, but firing under state of combustible gas occuring in the state of melting. In the case of Lift spread flame apparatus test, color nonwoven is very brittle which almost no flame spread owing to contracting and break by firing strength. The following data are agree with basis: total heat release is 2.66 MJ/$m^2$, limited combustible material (10 min) of incombustible rating appraisal in interior material of building, and incombustible materials (5 min) 8 MJ/$m^2$ in spite of the above data mentioned, those data are only as basis of interior finish, and so I cannot judge color nonwoven have incombustible rating retain through the above data. Accordingly, the basis of incombustible rating and experiment method about exterior finish must be arranged also.