• 제목/요약/키워드: Combining Forecasts

검색결과 25건 처리시간 0.032초

Forecasting Volatility of Stocks Return: A Smooth Transition Combining Forecasts

  • HO, Jen Sim;CHOO, Wei Chong;LAU, Wei Theng;YEE, Choy Leng;ZHANG, Yuruixian;WAN, Cheong Kin
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권10호
    • /
    • pp.1-13
    • /
    • 2022
  • This paper empirically explores the predicting ability of the newly proposed smooth transition (ST) time-varying combining forecast methods. The proposed method allows the "weight" of combining forecasts to change gradually over time through its unique feature of transition variables. Stock market returns from 7 countries were applied to Ad Hoc models, the well-known Generalized Autoregressive Conditional Heteroskedasticity (GARCH) family models, and the Smooth Transition Exponential Smoothing (STES) models. Of the individual models, GJRGARCH and STES-E&AE emerged as the best models and thereby were chosen for constructing the combined forecast models where a total of nine ST combining methods were developed. The robustness of the ST combining forecasts is also validated by the Diebold-Mariano (DM) test. The post-sample forecasting performance shows that ST combining forecast methods outperformed all the individual models and fixed weight combining models. This study contributes in two ways: 1) the ST combining methods statistically outperformed all the individual forecast methods and the existing traditional combining methods using simple averaging and Bates & Granger method. 2) trading volume as a transition variable in ST methods was superior to other individual models as well as the ST models with single sign or size of past shocks as transition variables.

예측치 결합을 위한 PNN 접근방법 (A PNN approach for combining multiple forecasts)

  • 전덕빈;신효덕;이정진
    • 대한산업공학회지
    • /
    • 제26권3호
    • /
    • pp.193-199
    • /
    • 2000
  • In many studies, considerable attention has been focussed upon choosing a model which represents underlying process of time series and forecasting the future. In the real world, however, there may be some cases that one model can not reflect all the characteristics of original time series. Under such circumstances, we may get better performance by combining the forecasts from several models. The most popular methods for combining forecasts involve taking a weighted average of multiple forecasts. But the weights are usually unstable. In cases the assumptions of normality and unbiasedness for forecast errors are satisfied, a Bayesian method can be used for updating the weights. In the real world, however, there are many circumstances the Bayesian method is not appropriate. This paper proposes a PNN(Probabilistic Neural Net) approach as a method for combining forecasts that can be applied when the assumption of normality or unbiasedness for forecast errors is not satisfied. In this paper, PNN method, which is similar to Bayesian approach, is suggested as an updating method of the unstable weights in the combination of the forecasts. The PNN method has been usually used in the field of pattern recognition. Unlike the Bayesian approach, it requires no assumption of a specific prior distribution because it gets probabilities by using the distribution estimated from given data. Empirical results reveal that the PNN method offers superior predictive capabilities.

  • PDF

결합예측에 관한 실증적 연구 (An empirical study on the combined forecasts)

  • 이우리
    • 응용통계연구
    • /
    • 제1권2호
    • /
    • pp.10-26
    • /
    • 1987
  • 미래의 한 관측값이 여러 방법으로 예측되었을 때, 이들 예측값들을 적절한 방법으로 결합 시키면 더 좋은 예측값을 얻을수 있게 된다. 본 논문에서는 결합예측을 위한 기존의 방법들을 간략히 소개하고, 결합 가중치의 추정을 위한 몇가지 대안적 절차를 제시한 후, 국내의 여러 자료들을 이용한 실증적 분석을 통하여 결합방법들에 대한 예측력을 비교 $\cdot$ 검토하게 된다. 실증적 분석 결과에 의하면, 제한 회귀가중치, 제한 로버스트 회귀가중치 및 혼합 회귀 가중치에 의한 결합방법들이 로버스트했다. 그러나 모든 경우에서 항상 가장 우수한 결합 방법은 발견될 수 없으므로 사전적으로 개별예측들의 특성을 분석하여, 대응되는 결합방법을 선책한다면 보다 유용한 예측결과를 얻을수 있게 된다.

IMPROVING THE ESP ACCURACY WITH COMBINATION OF PROBABILISTIC FORECASTS

  • Yu, Seung-Oh;Kim, Young-Oh
    • Water Engineering Research
    • /
    • 제5권2호
    • /
    • pp.101-109
    • /
    • 2004
  • Aggregating information by combining forecasts from two or more forecasting methods is an alternative to using forecasts from just a single method to improve forecast accuracy. This paper describes the development and use of a monthly inflow forecast model based on an optimal linear combination (OLC) of forecasts derived from naive, persistence, and Ensemble Streamflow Prediction (ESP) forecasts. Using the cross-validation technique, the OLC model made 1-month ahead probabilistic forecasts for the Chungju multi-purpose dam inflows for 15 years. For most of the verification months, the skill associated with the OLC forecast was superior to those drawn from the individual forecast techniques. Therefore this study demonstrates that OLC can improve the accuracy of the ESP forecast, especially during the dry season. This study also examined the value of the OLC forecasts in reservoir operations. Stochastic Dynamic Programming (SDP) derived the optimal operating policy for the Chungju multi-purpose dam operation and the derived policy was simulated using the 15-year observed inflows. The simulation results showed the SDP model that updated its probability from the new OLC forecast provided more efficient operation decisions than the conventional SDP model.

  • PDF

기상예보와 단순 강우-유출 모형을 이용한 확률적 홍수해석 (A stochastic flood analysis using weather forecasts and a simple catchment dynamics)

  • 김대하;장상민
    • 한국수자원학회논문집
    • /
    • 제50권11호
    • /
    • pp.735-743
    • /
    • 2017
  • 기후변화에 대한 우려와 함께 증가하고 있는 극한호우의 피해를 줄이기 위해서는 호우사상 발생 이전에 홍수위험을 미리 파악하여 피해를 대비할 시간을 늘리는 것이 중요하다. 본 연구에서는 기상청 동네예보를 기반으로 하는 간단한 확률적 홍수위험 산정방법을 제시하였다. 예보강수를 조건부로 하는 6시간 강수량의 확률밀도함수를 이용해 다수의 임의 강수량을 생성한 후 추계학적 모형으로 1시간 단위로 분해하여 간단한 강우-유출모형에 입력하는 방법을 사용하였다. 보청천 유역의 2017년 주요 강우사상에 제안된 방법을 적용한 결과, 7월 4일 최대홍수량이 나타났던 사상에 대해서는 예보강수를 이용한 모의는 홍수위험을 과소평가하였음을 확인하였고 반면 8월 15일 사상에 대한 동네예보는 강수량을 다소 과대추정 하였지만 홍수위험을 충분히 알릴 수 있는 정보로 평가되었다. 본 연구는 확정론적 모형과 확률론적 강수량을 결합하여 기상예보의 불확실성을 고려한 자료기반 홍수위험도 산정방법을 제시한다.

AHP와 ANP의 결합을 통한 합리적 예측모델구축

  • 이태희;김홍재
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1997년도 추계학술대회발표논문집; 홍익대학교, 서울; 1 Nov. 1997
    • /
    • pp.229-232
    • /
    • 1997
  • This study is pursuited to construct the reasonable forecasting model through the combining AHP with ANP. It may be considered to be advanced study for prior various combining forecasts methods. Although prior studies are constrained to single or two criteria in selecting the optimal forecasting method, this study extend it to multi-criteria, inner and outer-dependence of clusters and elements, and feedback effect in hierarchy. A brief illustration is provided, and limitations of this study are presented.

  • PDF

Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축 (Optimal Multi-Model Ensemble Model Development Using Hierarchical Bayesian Model Based)

  • 권현한;민영미
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1147-1151
    • /
    • 2009
  • In this study, we address the problem of producing probability forecasts of summer seasonal rainfall, on the basis of Hindcast experiments from a ensemble of GCMs(cwb, gcps, gdaps, metri, msc_gem, msc_gm2, msc_gm3, msc_sef and ncep). An advanced Hierarchical Bayesian weighting scheme is developed and used to combine nine GCMs seasonal hindcast ensembles. Hindcast period is 23 years from 1981 to 2003. The simplest approach for combining GCM forecasts is to weight each model equally, and this approach is referred to as pooled ensemble. This study proposes a more complex approach which weights the models spatially and seasonally based on past model performance for rainfall. The Bayesian approach to multi-model combination of GCMs determines the relative weights of each GCM with climatology as the prior. The weights are chosen to maximize the likelihood score of the posterior probabilities. The individual GCM ensembles, simple poolings of three and six models, and the optimally combined multimodel ensemble are compared.

  • PDF

Safety-Economic Decision Making Model of Tropical Cyclone Avoidance Routing on Oceans

  • Liu, Da-Gang;Wang, De-Qiang;Wu, Zhao-Lin
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 Asia Navigation Conference
    • /
    • pp.144-153
    • /
    • 2006
  • In order to take TC forecasts from different observatories into consideration, and make quantitative assessment and analysis for avoiding TC routes from the view of safety and cost, a new safe-economic decision making method of TC avoidance routing on ocean was put forward. This model is based on combining forecast of TC trace based on neural networks, technical method to determine the future TC wind and wave fields, technical method of fuzzy information optimization, risk analysis theory, and meteorological-economic decision making theory. It has applied to the simulation of MV Tianlihai's shipping on ocean. The result shows that the model can select the optimum plan from 7 plans, the selected plan is in accordance with the one selected by experienced captains.

  • PDF

Daily Electric Load Forecasting Based on RBF Neural Network Models

  • Hwang, Heesoo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권1호
    • /
    • pp.39-49
    • /
    • 2013
  • This paper presents a method of improving the performance of a day-ahead 24-h load curve and peak load forecasting. The next-day load curve is forecasted using radial basis function (RBF) neural network models built using the best design parameters. To improve the forecasting accuracy, the load curve forecasted using the RBF network models is corrected by the weighted sum of both the error of the current prediction and the change in the errors between the current and the previous prediction. The optimal weights (called "gains" in the error correction) are identified by differential evolution. The peak load forecasted by the RBF network models is also corrected by combining the load curve outputs of the RBF models by linear addition with 24 coefficients. The optimal coefficients for reducing both the forecasting mean absolute percent error (MAPE) and the sum of errors are also identified using differential evolution. The proposed models are trained and tested using four years of hourly load data obtained from the Korea Power Exchange. Simulation results reveal satisfactory forecasts: 1.230% MAPE for daily peak load and 1.128% MAPE for daily load curve.

부동산 매매지수와 전세지수 예측: 독립성분분석을 활용한 분석 (Forecasting Korean housing price index: application of the independent component analysis)

  • 박노진
    • 응용통계연구
    • /
    • 제30권2호
    • /
    • pp.271-280
    • /
    • 2017
  • 우리나라 뉴스에서 매일 빠지지 않는 내용은 아마도 부동산 경제에 관한 것이라고 생각된다. 많은 사람들은 부동산 가격의 변동에 관한 전문가들의 예측에 관심을 갖고 있다. 매매가격 혹은 전세가격을 예측하기위해 일반적으로 많이 사용되는 방법은 박스-젠킨스에 기반을 둔 자기회귀이동평균모형이다. 본 논문에서는 자기회귀모형과 다변량 자료분석에서 사용하는 독립성분분석을 결합하여 예측하는 방법을 시도하여 보았다. 매매가격과 전세가격을 두 개의 독립성분으로 재설정하고 독립성분들을 이용하여 예측한 후 역변환을 통해 매매가격과 전세가격을 예측하는 방법을 시도하였다. 그 결과 일반적인 자기회귀이동평균모형을 사용할 때 보다 독립성분을 활용한 예측이 실제 지수에 더 유사한 값들을 얻을 수 있음을 보였다.