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Abstract: Aggregating information by combining forecasts from two or more forecasting methods is an alternative to
using forecasts from just a single method to improve forecast accuracy. This paper describes the development and use of
a monthly inflow forecast model based on an optimal linear combination (OLC) of forecasts derived from naive, persis-
tence, and Ensemble Streamflow Prediction (ESP) forecasts. Using the cross-validation technique, the OLC model made
1-month ahead probabilistic forecasts for the Chungju multi-purpose dam inflows for 15 years. For most of the verifica-
tion months, the skill associated with the OLC forecast was superior to those drawn from the individual forecast tech-
niques. Therefore this study demonstrates that OLC can improve the accuracy of the ESP forecast, especially during the
dry season. This study also examined the value of the OLC forecasts in reservoir operations. Stochastic Dynamic Pro-
gramming (SDP) derived the optimal operating policy for the Chungju multi-purpose dam operation and the derived
policy was simulated using the 15-year observed inflows. The simulation results showed the SDP model that updated its

probability from the new OLC forecast provided more efficient operation decisions than the conventional SDP model.
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1. INTRODUCTION

A reliable streamflow forecast would be in-
valuable to water resource planners and manag-
ers but the mid- and long-term forecasts are
seldom practically accurate in many countries.
Korea is not an exception. In Korea, a simple
categorical forecasting approach such as the
‘Water Supply Outlook’,
monthly streamflows at major control points for

which forecasts

three categories, has been used: below normal
flow, normal flow, and above normal flow.
However, such forecasts have been insufficient

for giving useful information to the water man-

agers and Ensemble Streamflow Prediction
(ESP) technique could be a better alternative for
the Water Supply Outlook (Kim et al., 2001).
ESP is a well-known probabilistic forecasting
technique of the National Weather Service, USA.
Jeong and Kim (2002) applied ESP for prob-
abilistic forecasting of the monthly inflows to
the Chungju multipurpose dam in Korea. They
performed an error analysis on their resulting
probabilistic forecasts and found that the mod-
eling error was dominant in winter and early
spring (i.e. the dry season), while the meteoro-
logical error was dominant in summer (i.e. the
flood season). Their conclusion suggested that
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the rainfall-runoff model should be improved for
the dry season while the reliable meteorological
forecast should be utilized during the flood sea-
son. The latter conclusion has already been
studied by Stedinger and Kim (2002), and thus,
in our study, we addressed the former conclu-
sion. Instead of improving the rainfall-runoff
model itself, we attempted to improve the model
outcome. Various methods and sources are
available to produce forecasts, depending on the
situation. To consider such multiple forecasts,
one can select either the best forecast or aggre-
gate multiple forecasts into a single forecast.
The second option is called combined forecast-
ing. Such combined forecasting is popular in
economics, but there have only been a few at-
tempts made in hydrologic forecasting (e.g.
McLeod et al., 1987; Kim et al., 2003). Fur-
thermore, combined probabilistic forecasting
has been very rare even in economics. In devel-
oping a consensus probabilistic rainfall forecast
in Australia, Casey (1995) proposed a statistical
procedure based on an optimal linear combina-
tion of four probabilistic forecast models. In this
study, we updated the flow probabilities every
month after a new probabilistic forecast is cal-
culated using the optimal linear combination.
The main objective of this research is to im-
prove the ESP accuracy for the Chungju
multi-purpose dam and to assess the value of the

improved forecasts for reservoir operations.
2. PROBABILISTIC FORECASTING

Hydrologic forecasting is classified into de-
terministic forecasting and probabilistic fore-
casting. Deterministic forecasting gives a spe-
cific value, whereas probabilistic forecasting
suggests the likelihood of an event. Probabilistic
forecasts range from 0 (event cannot occur) to
1.0 (event is certain to occur).
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2.1 ESP Forecast

ESP runs a rainfall-runoff model with multi-
ple meteorological inputs to generate an ensem-
ble of possible streamflow hydrographs. A gen-
erated streamflow ensemble is a function of the
initial hydrological states at the time of forecast
in the rainfall-runoff model. The best probability
density function (referred to as the ESP pdf
hereafter) can then be fitted to the generated
streamflow ensemble to describe the likelihood
of an event occurring during a certain time pe-
riod being forecasted. In this study, the entire
range of streamflow (Q,) was divided into three
categories: low, medium, and high flow. A
probability was then assigned to each category
from the ESP pdf. The low, medium, and high
flow probabilities (denoted Pr%, Pr, and Pr)
were computed, respectively, using

Pt =1-Pi{Q, <qV]
Pr* = Pr[Q, <¢"1-Pi{Q, <g'] (1)
Pr =Pr[Q, <q,]

where g- and g, are the lower and upper limits
of the medium flow category, respectively. In
this study, the lower and upper limits are defined
as the 33.3% and 66.7% cumulative quantiles,
respectively, of a pdf fitted to the historical

streamflow data.

2.2 Persistence Forecast

A probabilistic forecast using the persistence
characteristic of streamflow may offer reason-
able accuracy over a certain period. Such per-
sistence between two adjacent forecasting times
cannot be explicitly considered in ESP, although
the initial condition of the ESP rainfall-runoff
model may imply persistence. Therefore, the
persistence forecast may compensate for this
shortcoming of ESP when both forecasts are
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combined.

This study employed a parametric approach
that was often used to derive the transition
probability in stochastic dynamic programming
(e.g. Kim & Palmer, 1997). Assuming that two
random variables follow a bivariate normal dis-
tribution, the conditional mean (ﬂ;,\ o, ) and

variance (O-;,IQH) of Q, given Q.;=¢"., for a

bivariate case are, respectively,

#(;'iQ"l = E(Q IQH = q:" ) = Hy + Poo [:i](q:l ~Ho, )
Or1

2

O-;IIQH = Var (Qr |Q,,| = ql‘;l)= G; (] - p;,.g,,l )
3

where p, , = the lag-1 correlation coefficient
between Q, and Q, . Using the above mean and

variance, the low, medium, and high flow probabili-

ties, respectively are calculated as follows,

U i i

pr = [ dQ, =1- @ 4t
J:b fQ,|Qt—l (Q)dQ, 9 o100 | “)

{ qU _ﬂ’ |

P = [[ Jyp (00, =) =l

; Q1|Ql"
L —ﬂi

_| I "Halo, ©

%010,

- q, — 4,
Prt' = [ oo (@90, = @[——'} ©)

[eston]

where f oloa =@ normal pdf of Q, on the condi-
tion of Q,;, and ®[-]= a standardized normal
cdf.
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2.3 Naive Forecast

If there is no deterministic forecasting tech-
nique available, only the average value of his-
torical data can be used to make a forecast. This
type of forecasting is called the deterministic
naive forecast. For probabilistic forecasting, the
naive forecast assigns a 1/J probability to each
of J categories. In this study, each naive forecast
has a 33.3% probability since three categories
such as the low, medium, high flow are consid-
ered. A forecasting technique, therefore, shall be
considered useful only if that technique is supe-
rior to the naive forecast. We expect that a tech-
nique combining forecasting techniques with the
naive forecast prevents it from performing
worse than the naive.

2.4 Optimal Linear Combination

No one method will produce the optimal
forecast in all cases. An alternative approach is
to combine the forecasts from two or more
methods in accordance with their relative per-
formances. By doing so, it is expected that the
strengths of each method could be exploited
(Mcleod et al., 1987). A consensus forecast with
high skill can be produced with an OLC
(Piechota et al., 1998) of the three forecast mod-
els discussed above. The three forecast models
such as the naive, persistence, and ESP forecasts,
are combined into a final consensus forecast as
follows,

Pr,.=aPr,+bPr,+cPr, (7

Determining an appropriate weight for each
individual forecast is essential in the OLC ap-
proach. Appropriate weights are determined
objectively by minimizing the error, which is
measured using a forecast skill score such as the
following Half Brier score (Brier and Allen,
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1951),

HBS =3 3(6, -4, ®)

j=1l i=l

where ¢, = the forecast probability that the

event will occur in category j; and J;; takes on a
value of 1 or 0, depending on whether or not the
event occurred in category J.

3. STOCHASTIC DYNAMIC PROGRAM-
MING

3.1 Formulation and Discretization

Reservoir operations always face uncertain-
ties in inflow, water demand, and other stochas-
tic variables. As a powerful stochastic optimiza-
tion technique, SDP derives reservoir operating
policies by solving the following recursive
equation (Stedinger et al., 1984),

ft(St :Xt)=m?XEQ,

{Bt (Sz s st RI);_EXM|Q,,X, [ft+1(St+l ’ Xt+l )]}

SH-IZSI +QI_RI (10)

%

®

R =
mll{ma){R:, S, +Q, _Smax]’ St +Qt _Smin}
Q)

where S, is the reservoir storage, O, is the inflow,
X, is the hydrologic state variable, S,;, is the
minimum reservoir storage, S,q 1S the maxi-
mum reservoir storage, R,is the actual release, R
. is the target release derived from the optimal
policy, B(S,,0,R,) is the immediate benefit
function, and f;, is the optimal future value
function at stage #+1.

If we ignore the hydrologic state variable, the
SDP recursive equation, called SDP-N in this
study, can be simply written as
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£(8,)=maxE, {B,(5,.0,.R )+ £.(s..)} (1)

To solve the Equation 12, the state and sto-
chastic variables such as S, and Q, are often rep-
resented with discrete values as shown in Equa-
tion 13,

£(81)=max 3 e (B (57,01 R )+ [£.. (5.}
(13)

is the kth discrete level of the
reservoir storage state variable at the beginning
of stage t, and O is the ith discrete level of the
stochastic inflow variable at stage 7. The discre-

where S¢

tizing schemes for the state and stochastic vari-
able will be described in the following section.
In this study, the storage state S was discretized
using the Savarenskiy’s scheme (Klemes, 1977).
The stochastic inflow, O,, was discretized into 7
states. For a standard normal distribute, Pegram
et al. (1991) suggested -2.03, -1.18, -0.56, O,
0.56, 1.18, and 2.03 for the discrete states and
0.054, 0.137, 0.198, 0.222, 0.198, 0.137, and
0.054 for the corresponding probabilities.

3.2 Solution Procedure and Re-Optimization

The SDP recursive equation is usually solved
in a backward direction from the terminal stage
for all possible combinations of the characteris-
tic values. As mentioned earlier, the storage
state variable is discretized into some represen-
tative values to allow numerical approximation
of the future value function and the release pol-
icy. However, in actual operations, a calculated
system state generally falls between these dis-
crete values, requiring interpolation within the
policy table.

To address this issue, Tejada-Guilbert et al.
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ESP | 0.901 | 0.841 | 0.737 | 0.815 | 0.616 0.628 | 0.503 | 0.548 | 0.639 | 0.696
Pers. | 0.563 | 0.436 | 0.524 | 0.618 | 0.548 | 0.664 | 0.634 | 0.672 | 0.664 | 0.737 | 0.622 | 0.482 | 0.597
Naive | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667
OLC | 0.599 | 0.436 | 0.535 | 0.629 | 0.570 | 0.712 | 0.664 | 0.711 | 0.675 | 0.518 | 0.601 | 0.525 | 0.598

*The best performance marked in bold.
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Figure 1. Percentage improvement of OLC against ESP

(1993) introduced the idea of reoptimization at
each stage with the actual system storage, rather
than interpolation within the policy table. Dif-
ferent from the general backward method in
SDP, this reoptimization technique moves for-
ward and calculates the optimal release. At each
decision stage, a one-stage SDP optimization
chooses an optimal release for the current state
of the system to maximize the sum of the imme-
diate benefit and the future value functions. In
this study, the future value function that has
been calculated from the backward SDP was
used in the reoptimization procedure. Further-
more, the reoptimization procedure has another
advantage, that 1s, discrete probabilities in SDP
can be updated as a new forecast becomes
available from OLC.

4. CASE STUDY

4.1 Study Basin

This study used monthly rainfall, inflow, and
evaporation data of the Chungju dam for an un-
interrupted 36-year period from 1966 to 2001.
The Chungju dam basin consists of three
sub-basins, each of which has several gauging
stations. The observed water level was trans-
formed to the discharges (i.e. inflows) using the
stage-discharge curve. All records were obtained
from the Korea Water Resources Corporation
website at http://wamis.kowaco.or.kr.

4.2 The Probabilistic Forecasts
The ESP technique was applied to making
1-month ahead runoff forecasts from 1986 to



106

2001 when the observed runoff data are avail-
able. For each forecasting month, the historical
rainfall and evaporation scenarios for the period
from 1966 to 2001 were input to a rain-
fall-runoff model called TANK to generate the
streamflow scenarios. Because the cross- valida-
tion technique was used in this study, we used
the runoff data on the 35-year for calibration and
the remaining year runoff data for the verifica-
tion. Thus an ensemble of 35 runoff scenarios
was generated at each forecasting month. To set
the initial condition of each forecasting month,
the TANK model was pre-ran for a two-month
warming-up period. To issue a probabilistic
forecast, the best probability density function
was fit to the runoff ensemble each month.
Through the goodness-of-fit test it was found
that the 2-parameter lognormal distribution pro-
vided the best fit for most part of the verification
period.

The persistence and the naive probabilistic
forecasts were also carried out for the same pe-
riod as was done by ESP. The forecast probabil-
ity distributions of ESP, Persistence, and Naive
were then discretized with the low, medium, and
high flows to issue the probabilistic forecasts for
each forecasting month.

As mentioned before, this study combined the
ESP, Persistence, and Naive forecasts through
the OLC approach. The weights were increased
by 0.01 from 0 to 1 to search the best value set
that produces the lowest Half-Brier score. Table
1 reports the Half-Brier scores of the four tech-
niques: OLC improved the accuracy of ESP for
the dry season but performed worse than Persis-
tence. For the calibration period where the
weights @, b, and ¢ were estimated, OLC per-
formed best, but this performance was not
maintained for the verification period. This in-
consistency problem should be explored further
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in future research. Figure 1 summarizes the per-
centage improvement of OLC against ESP. On
average, OLC achieved 11.83% in the HBS. As
expected, the improvement was made in the dry
season from December to May when the OLC
technique was used.

4.3 Value of the OLC Forecasts in Reser-

voir Operations

In this thesis, two SDP models were used to
obtain the optimal release policy for the
Chungju multi-purpose dam: SDP-N and SDP-O.
SDP-N is a classic SDP model moving back-
ward while SDP-O is the model which can up-
date every month its probability, which results
from the OLC approach. Both models were
reoptimized as described in the previous section.
With such reoptimiztion procedure, SDP-O
could update its OLC probability every month
while SDP-N could update only the current
storage since SDP-N used no forecast.

The primary objective for the monthly opera-
tions of the Chungju dam is to release water as
demanded in the downstream area, followed by
that needed for the hydropower generation. The
objective function and constraints are as fol-
lows,

12
max > (wF, —w,F,) (14)
! (=1

where F, is the benefit from the hydropower
generation at month ¢ and F;, is the loss from
the water shortage at downstream at month ¢
The benefit rate (w;) was set to 53.56 VkWh
while three values of the water shortage penalty
(w») were considered in this study: 53.56 Vm’,
76.49 Vm’, and 122.35 Vm’.

The release constraint represents the amount
of water that can be discharged from the
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Table 2. Simulation results for 3 objective functions
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- . T Annual = ‘Water | - Annual Spillway Annual
Model Shortage Release Net Benefit
i : ' (MCM) (MCM) (X 10°W)
OBJ SDP-O 127.9 830.5 354.7
1 SDP-N 122.3 873.2 352.0
Actual . 637.6 14.3 120.7
OBI SDP-O 778.4 114.2 902.1 354.7
) SDP-N 752.9 104.5 1070.0 352.0
Actual 863.0 637.6 14.3 120.7
OBIJ SDP-0O 772.3 100.9 996.5 354.7
3 SDP-N 748.6 94.1 1108.8 352.0
Actual 863.0 637.6 14.3 120.7

*OBJ 1: w; = 53.56 Vk, w, = 53.56 Vm®
OBJ 2: w, = 53.56 Vk, w; = 76.49 \Vm’
OBIJ 3: w;=53.56 Vk, w, = 122.35 Vm®

Chungju dam, ranging from the instreamflow
requirement (10.6 CMS) to the turbine capacity
(1980 CMS). The storage state variable was
discretized into 30 units by using the Savaren-
skiy’s method and the stochastic variable into 7
units as mentioned before. For each discretized
state, the optimal solution was searched by in-
creasing the decision variable (i.e. release) by
28.5 CMS. Moving backward, the iteration of
the SDP recursive equation stopped when the
difference between two consecutive iterations
was smaller than 0.01 for all the discrete state
and months.

The release policies derived with both SDP
models were simulated using the observed
monthly inflow data from 1987 to 2001. Using
again the cross validation scheme, the simula-
tion procedure started in January of 1987 when
the actual initial storage data began to become
available. We objectively compared the SDP
simulation results with those using the actual
release data with respect to three operational
aspects, the hydropower generation, the water
shortage, and the spill. The simulation results
are given in Table 2.

The simulation results showed that the hy-
dropower generation and the water shortages of
both SDP-N and SDP-O decrease as the penalty
on the water shortage increase. With respect to
the spill and the hydropower generation, the
SDP models did not performed better than the
actual operations. As for the three objective
functions, the spill calculated from SDP-O was
Iess than that from SDP-N, but it was much lar-
ger than the actual. Because this study did not
consider the minimization of the spill in the
SDP objective function, so that the proposed
SDP models spilled water in the flood season,
i.e., July, August, and September. For the dry
season, almost zero spill occurred during the
irrigation period. Since the actual operation re-
leased considerably more water fo mitigate the
flood risk during the flood season, it generated
more hydropower energy than SDP-N and
SDP-O during that season and consequently
throughout the year.

The annual net benefit of SDP-O is greatest
for all of three objective functions. As compared
with the result of SDP-N, SDP-O showed im-
provements of 0.8 %, 1.9 %, and 1.5 %. These
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improvements correspond to 2.7 hundred mil-
lion, 6.3 hundred million, and 4.4 hundred mil-
lion won, respectively.

5. CONCLUSIONS

To improve the ESP forecasting accuracy, two
additional probabilistic forecasts such as the
persistence and the naive forecasts were com-
bined with the ESP forecast using OLC that
minimizes the HBS. The proposed methodology
was applied to the probabilistic forecasting of
1-month ahead inflows to the Chungju dam. The
forecasting results for the verification period
associated with the cross-validation showed
OLC improved ESP especially during the dry
season. On average, OLC achieved 11.83% im-
provements over ESP in terms of HBS. The
forecasts shown here can be made in terms of
the conditional probability of exceedance that
can be helpful for managing reservoirs, fore-
casting future allocations, and establishing
drought management plans.

To examine the value of the improved fore-
casts in reservoir operations, two versions of
stochastic dynamic programming models such
as SDP-N and SDP-O were developed. The
SDP-derived release policies were simulated
with the observed inflow data. The greater pen-
alty causes the smaller power generation. With
respect to the annual net benefit, SDP-O shows
the better performance than the actual release
case as well as SDP-N.

To conclude, the use of the OLC probabilistic
forecasts with SDP can provide more efficient
operating decisions than SDP without forecasts
due to the improved accuracy of OLC over ESP.
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