• Title/Summary/Keyword: Combined matrix

Search Result 445, Processing Time 0.026 seconds

On the consideration of the masses of helical springs in damped combined systems consisting of two continua

  • Gurgoze, M.;Zeren, S.;Bicak, M.M.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.167-188
    • /
    • 2008
  • This study is concerned with the establishment of the characteristic equation of a combined system consisting of a cantilever beam with a tip mass and an in-span visco-elastic helical spring-mass, considering the mass of the helical spring. After obtaining the "exact" characteristic equation of the combined system, by making use of a boundary value problem formulation, the characteristic equation is established via a transfer matrix method, as well. Further, the characteristic equation of a reduced system is obtained as a special case. Then, the characteristic equations are numerically solved for various combinations of the physical parameters. Further, comparison of the results with the massless spring case and the case in which the spring mass is partially considered, reveals the fact that neglecting or considering the mass of the spring partially can cause considerable errors for some combinations of the physical parameters of the system.

Structure-Control Combined Design for 3-D Flexible Structure (3차원 유연구조물에 대한 구조-제어 통합설계)

  • Park Jung-Hyen
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.109-114
    • /
    • 2004
  • A combined optimal design problem of structural and control systems is discussed by taking a 3-D flexible structure as an object. We consider a minimum weight design problem for structural system and disturbance suppression problem for the control system. The conditions for the existence of controller are expressed in terms of linear matrix inequalities (LMI). By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken. We showed in this paper the validity of combined optimal design of structural and control systems.

Time-dependent and inelastic behaviors of fiber- and particle hybrid composites

  • Kim, Jeong-Sik;Muliana, Anastasia
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.525-539
    • /
    • 2010
  • Polymer matrix composites are widely used in many engineering applications as they can be customized to meet a desired performance while not only maintaining low cost but also reducing weight. Polymers can experience viscoelastic-viscoplastic response when subjected to external loadings. Various reinforcements and fillers are added to polymers which bring out more complexity in analyzing the timedependent response. This study formulates an integrated micromechanical model and finite element (FE) analysis for predicting effective viscoelastic-viscoplastic response of polymer based hybrid composites. The studied hybrid system consists of unidirectional short-fiber reinforcements and a matrix system which is composed of solid spherical particle fillers dispersed in a homogeneous polymer constituent. The goal is to predict effective performance of hybrid systems having different compositions and properties of the fiber, particle, and matrix constituents. A combined Schapery's viscoelastic integral model and Valanis's endochronic viscoplastic model is used for the polymer constituent. The particle and fiber constituents are assumed linear elastic. A previously developed micromechanical model of particle reinforced composite is first used to obtain effective mechanical properties of the matrix systems. The effective properties of the matrix are then integrated to a unit-cell model of short-fiber reinforced composites, which is generated using the FE. The effective properties of the matrix are implemented using a user material subroutine in the FE framework. Limited experimental data and analytical solutions available in the literatures are used for comparisons.

Enhancing CO2/CH4 separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8

  • Li, Wen;Samarasinghe, S.A.S.C.;Bae, Tae-Hyun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.156-163
    • /
    • 2018
  • High-performance mixed-matrix membranes that comprise both zeolitic imidazolate framework-8 (ZIF-8) and graphene oxide (GO) were synthesized with a solution casting technique to realize excellent $CO_2/CH_4$ separation. The incorporation of ZIF-8 nanocrystals alone in ODPA-TMPDA polyimide can be used to significantly enhance $CO_2$ permeability compared with that of pure ODPA-TMPDA. Meanwhile, the addition of a GO nanostack alone in ODPA-TMPDA contributes to improved $CO_2/CH_4$ selectivity. Hence, a composite membrane that contains both fillers displays significant enhancements in $CO_2$ permeability (up to 60%) and $CO_2/CH_4$ selectivity (up to 28%) compared with those of pure polymeric membrane. Furthermore, in contrast to the ZIF-8 mixed-matrix membrane, which showed decreased mechanical stability, it was found that the incorporation of GO could improve the mechanical strength of mixed-matrix membranes. Overall, the synergistic effects of the use of both fillers together are successfully demonstrated in this paper. Such significant improvements in the mixed-matrix membrane's $CO_2/CH_4$ separation performance and mechanical strength suggest a feasible and effective approach for potential biogas upgrading and natural gas purification.

Development of a quasi-dynamic origin/destination matrix estimation model by using PDA and its application (통행 단말기 정보를 이용한 동적 기종점 통행량 추정모형 개발 및 적용에 관한 연구)

  • Lim, Yong-Taek;Choo, Sang-Ho;Kang, Min-Gu
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.6
    • /
    • pp.123-132
    • /
    • 2008
  • Dynamic origin-destination (OD) trip matrix has been widely used for transportation fields such as dynamic traffic assignment, traffic operation and travel demand management, which needs precise OD trip matrix to be collected. This paper presents a quasi-dynamic OD matrix estimation model and applies it to real road network for collecting the dynamic OD matrix. The estimation model combined with dynamic traffic assignment program, DYNASMART-P, is based on GPS embedded in PDA, which developed for collecting sample dynamic OD matrix. The sample OD matrix should be expanded by the value of optimal sampling ratio calculated from minimization program. From application to real network of Jeju, we confirm that the model and its algorithm produce a reasonable solution.

Leveraging and Fostering Diversity in the IS Discipline: Intradisciplinary Knowledge Building via the IT View-IS Phenomenon (VP) Matrix

  • Inchan Kim;Jama Summers
    • Asia pacific journal of information systems
    • /
    • v.34 no.1
    • /
    • pp.49-90
    • /
    • 2024
  • Intradisciplinary research refers to research that integrates ideas often associated with different research domains in a discipline. Such cross-fertilization leverages abundant diversity present in the IS discipline to tackle increasingly complex IS problems and grand challenges. Despite its importance and recent attention, a concerted, sustained effort toward intradisciplinary research is lagging. A fundamental issue we see is a lack of an elaborate IS research map that effectively shows similarities and differences among research domains and demonstrates types of ideas that may travel and integrate into different domains. We thus aim to propose an elaborate IS research map and compile research elements that can be tried and combined across research domains. To do so, we utilize two IS classics (i.e., IT views and IS phenomena), identify their complementarity, and interweave the two disparate ways of portraying the IS research field. The resultant view-phenomenon (VP) matrix specifies research domains based on two consistent, comprehensive criteria and helps researchers discern similarities and differences among research domains more effectively. The VP matrix also sheds light on a variety of research elements that can flow across research domains. The VP matrix along with the research elements together facilitate intradisciplinary efforts and, more broadly, help the IS discipline to prosper. The VP matrix is particularly helpful for doctoral students and young scholars.

SOME IDENTITIES ASSOCIATED WITH 2-VARIABLE TRUNCATED EXPONENTIAL BASED SHEFFER POLYNOMIAL SEQUENCES

  • Choi, Junesang;Jabee, Saima;Shadab, Mohd
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.533-546
    • /
    • 2020
  • Since Sheffer introduced the so-called Sheffer polynomials in 1939, the polynomials have been extensively investigated, applied and classified. In this paper, by using matrix algebra, specifically, some properties of Pascal and Wronskian matrices, we aim to present certain interesting identities involving the 2-variable truncated exponential based Sheffer polynomial sequences. Also, we use the main results to give some interesting identities involving so-called 2-variable truncated exponential based Miller-Lee type polynomials. Further, we remark that a number of different identities involving the above polynomial sequences can be derived by applying the method here to other combined generating functions.

The consolidation of CNT/Cu mixture powder using equal channel angular pressing (Equal Channel Angular Pressing 공정을 이용한 CNT/Cu 복합분말의 고형화)

  • Yoon, S.C.;Quang, P.;Kim, H.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.119-122
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve full density of 1 vol.% carbon nanotube (CNT)-metal matrix composites with superior mechanical properties by improved particle bonding and least grain growth, which were considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (equal channel angular pressing), the most promising method in SPD, was used for the CNT-Cu powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 route C passes was conducted at room temperature. It was found by mechanical testing of the consolidated 1 vol.% CNT-Cu that high mechanical strength could be achieved effectively as a result of the Cu matrix strengthening and improved particle bonding during ECAP. The ECAP processing of powders is a viable method to achieve fully density CNT-Cu nanocomposites.

  • PDF

Printed Active-Matrix Displays

  • Burns, S.E.;Kuhn, C.;Jacobs, K.;Ramsdale, C.;Arias, A.C.;Watts, J.;Etchells, M.;Chalmers, K.;Devine, P.;Murton, N.;Norval, S.;King, J.;Mills, J.;Sirringhaus, H.;Friend, R.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.227-229
    • /
    • 2003
  • We present a process for printing active matrix displays. In this process, transistors are fabricated using soluble semi-conducting and conducting materials. Accurate definition of the transistor channel and other circuit components is achieved by direct inkjet printing combined with surface energy patterning. We present results on our 4,800 pixel, 50 dpi, active matrix displays.

  • PDF

A Study on the Sound Absorption of Multiple Layer Perforated Plate Systems Combined with Porous absorbing Materials (다공성 흡음재가 조합된 다중 다공판 시스템의 흡음성능에 관한 연구)

  • Heo, Sung-Wook;Lee, Dong-Hoon;Kim, Wook;Kwon, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.388.1-388
    • /
    • 2002
  • The sound absorption coefficients for multiple layer perforated plate systems containing several companments with airspaces and porous absorbing materials are estimated using the transfer matrix method developed in the previous paper. The absorption coefficients from transfer matrix method agree well with the values measured by the two-microphone impedance tube method fur various combinations of perforated Plates, airspaces or porous materials. (omitted)

  • PDF