• Title/Summary/Keyword: Combined array

Search Result 219, Processing Time 0.024 seconds

Development of a High Efficient LED System for the Plant Growth (고효율 LED 식물재배 시스템 개발)

  • Hwang, Jong-Dae;Ko, Dong-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.121-129
    • /
    • 2014
  • This study was carried out to develop an efficient plant growth system that can be controlled by altering the wavelength and illumination using a LED module. If it is possible to develop a system that can be controlled in this manner, utilizing different characteristics in the meaningful wavelength band depending on the growth time or type of plant, the plant growth conditions can be optimized. In order to this, red, green, blue and white LEDs are arrayed in a rectangle, consisting of LED modules which can be combined with each other. Consequently, the array can be used to select the optimal light conditions with monochromatic red, green, blue and white LEDs, or mixed LEDs, for plant growth. Experiments on the characteristics of the wavelengths to evaluate the efficiency of the plant growth system were performed. The usefulness of the system was demonstrated through a cultivation test involving several special plants.

Rotational capacity of shallow footings and its implication on SSI analyses

  • Blandon, Carlos A.;Smith-Pardo, J. Paul;Ortiz, Albert
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.591-617
    • /
    • 2015
  • Standards for seismic assessment and retrofitting of buildings provide deformation limit states for structural members and connections. However, in order to perform fully consistent performance-based seismic analyses of soil-structure systems; deformation limit states must also be available for foundations that are vulnerable to nonlinear actions. Because such limit states have never been established in the past, a laboratory testing program was conducted to study the rotational capacity of small-scale foundation models under combined axial load and moment. Fourteen displacement-controlled monotonic and cyclic tests were performed using a cohesionless soil contained in a $2.0{\times}2.0{\times}1.2m$ container box. It was found that the foundation models exhibited a stable hysteretic behavior for imposed rotations exceeding 0.06 rad and that the measured foundation moment capacity complied well with Meyerhof's equivalent width concept. Simplified code-based soil-structure analyses of an 8-story building under an array of strong ground motions were also conducted to preliminary evaluate the implication of finite rotational capacity of vulnerable foundations. It was found that for the same soil as that of the experimental program foundations would have a deformation capacity that far exceeds the imposed rotational demands under the lateral load resisting members so yielding of the soil may constitute a reliable source of energy dissipation for the system.

Experimental study for optimizing the thermal regulating system with phase change material on the photovoltaic panel (태양광패널 온도제어를 위한 PCM시스템 최적화에 관한 실험적 연구)

  • Lee, Hyo-Jin;Chun, Jong-Han
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.273-278
    • /
    • 2009
  • The experimental study is performed to investigate the optimum design of the system dissipating properly heat from the in-situ solar panel installed on site. For this purpose, six 12-Watts panels, which are set at the different conditions of the solar panels contained phase change material, changing the array of the aluminum fin and honeycomb at the back of the panel, are tested. PCM, which has $44^{\circ}C$ melting point, is chosen in this study. In order to enhance the thermal heat from the absorbed heat in PCM, finned aluminum plate is placed. Furthermore, Aluminum honeycomb is imbedded in the back container to find if it would improve the thermal conductivity of PCM. As a result, the solar panel, which is combined with honeycomb and outward fins with PCM instead of placing the fine inward, is showing the best performance in terms of controling panel temperature and efficiency.

  • PDF

Nano and micro structures for label-free detection of biomolecules

  • Eom, Kil-Ho;Kwon, Tae-Yun;Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.403-420
    • /
    • 2010
  • Nano and micro structure-based biosensors are promising tool for label-free detection of biomolecular interactions with great accuracy. This review gives a brief survey on nano and micro platforms to sense a variety of analytes such as DNA, proteins and viruses. Among incredible nano and micro structure for bio-analytical applications, the scope of this paper will be limited to micro and nano resonators and nanowire field-effect transistors. Nanomechanical motion of the resonators transducers biological information to readable signals. They are commonly combined with an optical, capacitive or piezo-resistive detection systems. Binding of target molecule to the modified surface of nanowire modulates the current of the nanowire through electrical field-effect. Both detection methods have advantages of label-free, real-time and high sensitive detection. These structures can be extended to fabricate array-type sensors for multiplexed detection and high-throughput analysis. The biosensors based on these structures will be applied to lab-on-a-chip platforms and point-of-care diagnostics. Basic concepts including detection mechanisms and trends in their fields will be covered in this review.

Temperature Control for PV Panel Absorbing Heat by Phase Change Material and its Estimation (상변환물질을 활용한 태양광 패널 표면온도 제어효과 및 최적화 시스템)

  • Lee, Hyo-Jin;Chun, Jong-Han
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.10-15
    • /
    • 2010
  • The experimental study was conducted to optimize the system dissipating properly heat from the in-situ solar panel installed on the roof. For this purpose, six 12-Watt panels, which were consisted of the different design conditions such as containing phase change material(PCM), changing the array of the aluminum fin and honeycomb at the back of the panel, were tested. PCM, which had $44^{\circ}C$ melting point, was chosen in this study. In order to enhance absorbing and expelling heatin PCM, profiled aluminum fin was placed either inward oroutward from the panel. Furthermore, Aluminum honeycomb is imbedded in the back container to find if it would improve the thermal conductivity of PCM. During the experiment, there were ranged to $26^{\circ}C\sim32^{\circ}C$ for outdoor temperature and $700W/m^2\sim1000W/m^2$ for irradiance. As a result, the solar panel, combined with honeycomb and outward fins with PCM instead of placing the fins inward, is showing the best performance in terms of controling panel temperature and its efficiency.

Forgery Detection Scheme Using Enhanced Markov Model and LBP Texture Operator in Low Quality Images (저품질 이미지에서 확장된 마르코프 모델과 LBP 텍스처 연산자를 이용한 위조 검출 기법)

  • Agarwal, Saurabh;Jung, Ki-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1171-1179
    • /
    • 2021
  • Image forensic is performed to check image limpidness. In this paper, a robust scheme is discussed to detect median filtering in low quality images. Detection of median filtering assists in overall image forensic. Improved spatial statistical features are extracted from the image to classify pristine and median filtered images. Image array data is rescaled to enhance the spatial statistical information. Features are extracted using Markov model on enhanced spatial statistics. Multiple difference arrays are considered in different directions for robust feature set. Further, texture operator features are combined to increase the detection accuracy and SVM binary classifier is applied to train the classification model. Experimental results are promising for images of low quality JPEG compression.

Probabilistic assessment on buckling behavior of sandwich panel: - A radial basis function approach

  • Kumar, R.R.;Pandey, K.M.;Dey, S.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.197-210
    • /
    • 2019
  • Probabilistic buckling behavior of sandwich panel considering random system parameters using a radial basis function (RBF) approach is presented in this paper. The random system properties result in an uncertain response of the sandwich structure. The buckling load of laminated sandwich panel is obtained by employing higher-order-zigzag theory (HOZT) coupled with RBF and probabilistic finite element (FE) model. The in-plane displacement variation of core as well as facesheet is considered to be cubic while transverse displacement is considered to be quadratic within the core and constant in the facesheets. Individual and combined stochasticity in all elemental input parameters (like facesheets thickness, ply-orientation angle, core thickness and properties of material) are considered to know the effect of different degree of stochasticity, ply- orientation angle, boundary conditions, core thickness, number of laminates, and material properties on global response of the structure. In order to achieve the computational efficiency, RBF model is employed as a surrogate to the original finite element model. The stiffness matrix of global response is stored in a single array using skyline technique and simultaneous iteration technique is used to solve the stochastic buckling equations.

An Error position detection and recovery algorithm at 3×3 matrix digital circuit by mimicking a Neuron (뉴런의 기능을 모사한 3×3배열구조의 디지털 회로에서의 오류위치 확인 및 복구 알고리즘)

  • Kim, Soke-Hwan;Hurg, Chang-Wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.101-104
    • /
    • 2016
  • In this study, we propose an algorithm to simulate the function of the coupling structure and having two neurons to find out exactly recover the temporary or permanent position errors that can occur during operation in a digital circuit was separated by function, a 3x3 array. If any particular part in the combined cells are differentiated cells have a problem that function to other cells caused an error and perform the same function are subjected to a step of apoptosis by the surrounding cells. Designed as a function block in the function and the internal structure having a cell structure of this digital circuit proposes an algorithm.

  • PDF

A diagnostic dilemma in pediatric osteomyelitis: a case report

  • Mandrekar, Pooja Narendra;Gavhane, Sanket;Fernandes, Trishala Bhadauria;Dhupar, Vikas;Dhupar, Anita
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.48 no.2
    • /
    • pp.117-121
    • /
    • 2022
  • Infantile osteomyelitis is a rare disease that is infective in nature and may rapidly turn fatal, as the disease is often misdiagnosed due to its varied presenting signs. Early diagnosis may help in avoiding systemic involvement and permanent deformity. The disease presents with signs of orbital involvement, nasal congestion, and emesis, as well as other standard hallmarks of infection. Furthermore, the maxilla is a highly vascular and porous bone and the occurrence of osteomyelitis in an infant maxilla is highly uncommon. In addition, routine blood work is not suggestive of the presence of this disease. Thus, prompt diagnosis of this condition poses a challenge to surgeons due to the confusing array of symptoms combined with the rarity of the disease. One such case of osteomyelitis of the maxilla in a young child is presented. The dilemma encountered by the surgeon during the diagnosis and treatment of the disease is discussed.

RENOVATION OF SEOUL RADIO ASTRONOMY OBSERVATORY AND ITS FIRST MILLIMETER VLBI OBSERVATIONS

  • Naeun, Shin;Yong-Sun, Park;Do-Young, Byun;Jinguk, Seo;Dongkok, Kim;Cheulhong, Min;Hyunwoo, Kang;Keiichi, Asada;Wen-Ping, Lo;Sascha, Trippe
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.6
    • /
    • pp.207-213
    • /
    • 2022
  • The Seoul Radio Astronomy Observatory (SRAO) operates a 6.1-meter radio telescope on the Gwanak campus of Seoul National University. We present the efforts to reform SRAO to a Very Long Baseline Interferometry (VLBI) station, motivated by recent achievements by millimeter interferometer networks such as Event Horizon Telescope, East Asia VLBI Network, and Korean VLBI Network (KVN). For this goal, we installed a receiver that had been used in the Combined Array for Research in Millimeter-wave Astronomy and a digital backend, including an H-maser clock. The existing hardware and software were also revised, which had been dedicated only to single-dish operations. After several years of preparations and test observations in 1 and 3-millimeter bands, a fringe was successfully detected toward 3C 84 in 86 GHz in June 2022 for a baseline between SRAO and KVN Ulsan station separated by 300 km. Thanks to the dual frequency operation of the receiver, the VLBI observations will soon be extended to the 1 mm band and verify the frequency phase referencing technique between 1 and 3-millimeter bands.