• 제목/요약/키워드: Combined Sewer Overflows

검색결과 77건 처리시간 0.03초

GIS 기반의 SWMM 모형을 이용한 하수도시스템 선정에 따른 도시하천 수질개선효과의 정량적 분석 (Analysis of the Effects of Sewer System on Urban Stream using SWMM based on GIS)

  • 장주형;박해식;박청길
    • 한국물환경학회지
    • /
    • 제22권6호
    • /
    • pp.982-990
    • /
    • 2006
  • Generally CSOs (Combined Sewer Overflows) are regarded as one of the most serious nonpoint pollution source in the urban watershed, Particularly, the water quality of the Oncheon stream is seriously affected by CSOs because the capacity of interception sewer system connected to the Suyoung wastewater treatment plant is too small to intercept most storm water discharges. The objective of this study is to evaluate the effect of nonpoint source on an urban stream with regards to combined sewer system and separate sewer system using GIS (Geographic Information System) and SWMM (Storm Water Management Model), and to provide an insight for the management of urban stream water quality. In order to consider the effect of CSOs on the receiving water quality, the flow divider element in SWMM was applied. The model calibration and verification were performed by the measured data of quantity and quality on the Oncheon stream. The quantity data acquired from the Suyoung wastewater treatment plant were also used for this procedure. In case of separate sewer system, the modeling results showed the increased tendency in streamflow compared with the combined system in dry weather, In addition, the water quality is remarkably improved in rainfall events at the separate condition. The results imply that the construction of separate sewer system should be taken into first consideration to restore the quality and quantity of water in urban streams.

합류식하수도 월류수 관리를 위한 초기우수 저류조 설계방안 연구 (A Study on First Flush Storage Tank Design for Combined Sewer Overflows (CSOs) Control)

  • 손봉호;어성욱
    • 한국물환경학회지
    • /
    • 제27권5호
    • /
    • pp.654-660
    • /
    • 2011
  • One of the best way to control Combined Sewer Overflow (CSO) is proposed to construct first flush storage tank. But there is little known parameters for optimum design of these facilities. This study was conducted to get optimum design parameters for a first flush storage tank construction. The optimization of the tank is generally based upon some measure of SS(Suspended Solid) mass holding efficiency. Water quality deterioration of receiving water body happened right after first time occurring rainfall in dry weather seasons. So, design rainfall intensity is used at 2 mm/hr for peak of monthly average intensities of dry seasons. The capacities for each evaluated catchment are designed from 14.4 min to 16.1 min HRT of CSOs flow at design rainfall intensity. Owing to all storage tanks are connected to interception sewer having a redundancy, the suggested volume could be cut down.

The effect of Combined Sewer Overflows on river's water quality

  • Bae, Hun Kyun
    • Membrane and Water Treatment
    • /
    • 제11권1호
    • /
    • pp.49-57
    • /
    • 2020
  • The effect of Combined Sewer Overflow on the river system was investigated throughout three preliminary field tests and three main ones. As a result of the study, Combined Sewer Overflow did not affect water qualities on the main stream since the concentration of the main stream did not significantly changed during rainfall events although the water quality of tributaries has rapidly deteriorated due to the influence of the Combined Sewer Overflow during rainfall events. The main cause of the result is that the flow rate of the tributaries is considerably lower than that of the main stream, so that the tributaries with deteriorated water quality during rainfall events did not significantly affect the quality of the actual main stream. Therefore, the water quality of the Kumho River is more affected by the wastewater treatment facilities that discharges water continuously to the main stream than pollutants from non-point pollution sources during rainfall events. As a result, managements for discharges from wastewater treatment facilities should be strengthened in order to improve the water quality of the river.

유역형상에 따른 합류식 하수도의 월류부하량 추정 (Effects of Combined Sewer Overflows According to Drainage Basin Types)

  • 이철규;현인환;정정렬;심재현
    • 한국방재학회 논문집
    • /
    • 제4권4호
    • /
    • pp.21-26
    • /
    • 2004
  • 우천시 합류식 하수도의 월류수(CSOs)에 의한 오염부하량을 감소하기 위한 대책으로 차집량의 결정은 매우 중요하다. 오염부하량 감소를 위한 대책으로 우수를 전량 차집하여 처리하는 것이 가장 바람직하겠으나, 시설의 규모와 기타 유지 관리면에서 합리적이지 않다. 본 연구에서는 배수구역의 유역형상, 면적, 강우시 차집량 등을 변화시키면서 이로 인해 변화하는 합류식 하수관거의 유랑과 수질 등을 분석하였으며, 계획차집량의 변동에 다른 CSOs의 영향을 파악함과 동시에 합류식과 분류식을 각각 비교해 봄으로서 하천에 방류되는 오염부하량의 정도를 비교해 보았다.

CSOs 제어를 위한 기준강우 및 차집 용량 산정 (Standard-Rainfall and Capacity of Intercepting Sewer to Control CSOs)

  • 이정호;주진걸;김중훈
    • 한국산학기술학회논문지
    • /
    • 제9권1호
    • /
    • pp.129-135
    • /
    • 2008
  • 하천으로 유입되는 합류식월류수(Combined Sewer Overflows, CSOs)는 하천의 수질 오염에 영향을 끼치게 되며 월류량은 차집관거의 설계용량에 따라서 결정되어진다. 따라서 차집관거의 기준 용량은 강우 유출의 특성 및 수질을 고려하여 합리적으로 결정되어야한다. 그러나 국내의 차집관거 기준 용량은 일괄적으로 시간최대오수량의 3배로 책정되어있으며, 강우-유출의 특성을 고려하지 않은 채 모든 지역에 대하여 균일하게 적용되어왔다. 따라서 본 연구에서는 강우유출 특성을 고려하여 강우 데이터에 대한 통계적 분석을 통하여 차집관거의 기준 용량을 결정하기 위한 기준 강우를 산정하였다. 서울지역의 평균개념의 확률강우량을 통하여 산정된 기준강우의 지속시간은 4hr이며 강우량은 재현기간 1.5년에 해당하는 6.76mm로 산정되었다. 또한 산정된 기준 강우를 적용하여 강우유출 특성 분석은 SWMM을 이용하였으며 이를 통하여 CSOs를 계산하였다.

합류식 하수관거 월류수 처리를 위한 섬유사 여과 장치의 처리특성 (Performance of fiber media filter device for combined sewer overflows treatment)

  • 손상미;주티담롱판;박기영;박철휘
    • 상하수도학회지
    • /
    • 제24권2호
    • /
    • pp.231-236
    • /
    • 2010
  • A compressible media filtration process with synthetic fiber media was studied for combined sewer overflows (CSOs) treatment. Since the operation performance of fiber media filtration was dependent on the pattern of CSOs, the flow rate of CSOs was investigated and it was characterized by a big fluctuation. Thus, in this study, the fiber media filtration process was tested with wide range of filtration velocity. The removal efficiency was proportion to the increase in compressibility. As the filtration velocity was increased, the treatment efficiency was decreased and consequently leveled off when the velocity exceeded 750 $m^3/m^2$/d. An exponential equation was introduced to express the relationship between the removal efficiency and up-flow velocity. At columm test, six repetition of filtration and backwash cycle did not after the filtering velocity under the constant pressure condition.

우수토실에 설치된 월류수 제어를 위한 유입유량조절장치의 개선효과 (Improvements of Inflow Controller Installed in Storm Overflow Diverging Tank for CSOs Control)

  • 임봉수;박윤해;김태응
    • 한국물환경학회지
    • /
    • 제31권4호
    • /
    • pp.428-435
    • /
    • 2015
  • This study was carried out to evaluate the performance of a inflow controller for the control of combined sewer overflows (CSOs). Because of the inflow controller could be adjusted manually by predicting the maximum amount of peak flow, the mechanical adjustment of this controller was higher than the existing fixed-type controller in field application. Standardizing the relationship between the flow and the clearance and angle of an inlet cover plate on the inflow conditions can selected to the optimum conditions for the on-site. It was concluded that BOD pollutant loading at the region in which inflow controller was installed had shown the removal efficiency rate of 42%.

초기우수 관거유입계수 산정 및 오염부하 기여도 평가 (Evaluation of First Flush Rainfall Inflow and Pollution Loads into Manhole against Combined and Sanitary Sewer Overflows)

  • 김홍태;신동석;김용석
    • 한국물환경학회지
    • /
    • 제31권1호
    • /
    • pp.67-70
    • /
    • 2015
  • Some data into combined and sanitary sewer system were collected in order to find out the characteristics of discharge from first flush rainfall inflow. The inflow ratios of combined and sanitary sewer system were 0.46 and 0.27 during rains from various survey data. The average inflow ratio 0.31 was appropriate for general application because many watersheds were not classified clearly as combined or sanitary sewage treatment areas. The percentage of first flush loads in the whole BOD load was about 10%. This result was thought some meaningful, comparing with similarity of first flush pollution load contribution previous surveyed by KECO (2004).