• 제목/요약/키워드: Combine harvest

검색결과 33건 처리시간 0.032초

벼 수확후의 운반처리체계에 관한 연구 (A Study on the Trnasportation System of Paddy After Combine Harvest)

  • 김학주;이규승
    • Journal of Biosystems Engineering
    • /
    • 제24권5호
    • /
    • pp.399-406
    • /
    • 1999
  • This study was conducted to investigate the labor requirements and transportation cost of paddy for the different harvest and transportation systems for obtaining a basic reference to the improvement of present harvest-transportation systems. One hundred and eighty five farm households with sack type combine harvester and thirty farm households with bulk type combine harvester were surveyed for thirty counties from eight provinces except jeju and also eleven Rice Processing Complex were covered for this survey. This survey was carried from 8th. October 1997 to 5th. November 1997. For the labor requirements, bulk trailer system require 6.8th/ha, 10.3/ha for sack harvest-tractor trailer, and 8.8h/ha for bulk harvest-container bag. The machinery utilization cost for the different paddy harvest-transportation systems, combine sack harvest-tractor trailer system is 282 thousand won/ha, and most economical compared with other systems. Combine bulk harvest with tractor system was 416 thousands won/ha and combine bulk harvest with container bag system was 446 thousands won/ha. In order to propagate bulk harvest-transportation system, a proper bulk transportation means with considering road condition in the paddy field and paddy size should be developed, and considering cycle time it appeared that the proper capacity of bulk container was 3.5ton at the present.

  • PDF

Combine Harvest Scheduling Program for Rough Rice using Max-coverage Algorithm

  • Lee, Hyo-Jai;Kim, Oui-Woung;Kim, Hoon;Han, Jae-Woong
    • Journal of Biosystems Engineering
    • /
    • 제38권1호
    • /
    • pp.18-24
    • /
    • 2013
  • Purpose: This study was conducted to develop an optimal combine scheduling program using Max-Coverage algorithm which derives the maximum efficiency for a specific location in harvest seasons. Methods: The combine scheduling program was operated with information about combine specification and farmland. Four operating types (Max-Coverage algorithm type, Boustrophedon path type, max quality value type, and max area type) were selected to compare quality and working capacity. Result: The working time of Max-Coverage algorithm type was shorter than others, and the total quality value of Max-Coverage algorithm and max quality value type were higher than others. Conclusion: The developed combine scheduling program using Max-Coverage algorithm will provide optimal operation and maximum quality in a limited area and time.

벼 품종의 콤바인 수확과 건조방법에 따른 미입질의 변화 (Effects of Combine Harvesting and Drying Methods on Grain Quality in Rice Cultivars)

  • 이호진;서종호;이은웅
    • 한국작물학회지
    • /
    • 제35권3호
    • /
    • pp.282-286
    • /
    • 1990
  • 최근 미곡의 수확과 건조작업서 기계화와 동력화가 빠른 속도로 진행되고 있다. 벼 품종 추청과 밀양 2003를 재래식 낫과 콤바인으로 수확하고 천일건조, 개량곳간식, 인공화력식으로 건조하고 농기계 사용에 따른 곡물의 수확손실, 작업속도, 미립의 품질에 미치는 영향을 평가하였다. 1. 수확과정에서 낙립에 의한 포장손실은 콤바인을 사용하더라도 인력수확이나 차이 없었고 탈곡손실만은 콤바인 수확이 1.2% 가량 증가하였다. 소요작업시간은 콤바인 탈곡까지 완료하고도 3.5배 빨랐다. 품종간에 수확손실은 차이가 심하였는데 통일계인 밀양 2003가 일반계인 추정보다 약 2배의 손실량이 발생하였다. 2. 미곡의 건조방법별 건조속도는 수분함량 14%로 감소시키는데 인력수확후 천일건조는 10일이 소요되었으나 콤바인 수확후 천일건조는 5-9일이 걸렸고 개량곳간식은 2-3일, 화력건조는 15시간이 소요되었을 뿐이었고 계속 둘 경우 과건될 위험이 컸다. 3. 수확과 건조방법이 미립질에 미치는 영향은 완전미비율에서 화력건조가 가장 낮아 천일건조 보다 약 4% 저하하였으며 품종간에는 밀양 2003가 추청보다 낮은 경향이었다. 이것은 화력건조에서 동할미와 쇄미의 비율이 증가하였기 때문이었고 수확방법에 따른 미질의 영향은 콤바인 수확이 밀양 2003의 불완전미비율을 증가시켰으나 단립형인 추청은 영향을 받지 않았다.

  • PDF

보통형 콤바인 부착용 유채 예취장치 개발(II) - 유채 수확 적응성 평가 - (Development of a Rapeseed Reaping Equipment Attachable to a Conventional Combine (II) - Evaluation of Feasibility in Rapeseed Harvesting -)

  • 이충근;최용;장영석;정용수;이승규;이왕돈
    • Journal of Biosystems Engineering
    • /
    • 제34권1호
    • /
    • pp.21-29
    • /
    • 2009
  • A rapeseed reaping equipment attachable to a conventional combine was developed in order to harvest rapeseed for bio-diesel materials. This study was carried out to measure the harvest feasibility of a prototype combine in rapeseed fields. Grain, stem and pod flow rate, grain qualities (whole kernel, damaged kernel, unhulled kernel, material-other-than-grain) and grain loss rates (header, threshing, separation) were investigated in each field test. As the result of the fold test, the average grain flow rates of SUNMANG and MS varieties showed 1,430 kg/h and 2,038 kg/h, respectively. The average stem and pod flow rates showed 3,443 kg/h and 6,596 kg/h, respectively. In each working speed, the average whole kernel rate and the material-other-than-grain showed 99.9% and below 0.08%, respectively. In the average grain loss, the rates showed 5.66% in case of SUNMANG and 5.94% in MS. Header loss was higher than other parts for SUNMANG. However, threshing loss was relatively higher than other parts for MS. Header loss rate due to side cutter knifes, however, was not so high when compared with a grain loss due to the cutter bar. Effective field capacity and field efficiency of the prototype combine showed 0.389 ha/h and 44%, respectively. Comparison of customary combine with the prototype combine through field test demonstrated that the header loss was reduced by 69.3% when the prototype combine was used.

농촌의 주곡 건조.저장.가공 작업체계 개선확립 (Improvement of System for Grain Drying, Storing , and Processing in Rural Area)

  • 서상용;이승규;김용환
    • Journal of Biosystems Engineering
    • /
    • 제3권1호
    • /
    • pp.33-46
    • /
    • 1978
  • To get the goal of self-supply of food grain, improvement of post-harvest grain operations in rural area is under consideration as an important task of agriculture in Korea. This is study is focused on elimination of losses and deteriorations of grain and reduction of labour requirements and funds for post-harvest grain operations. The purpose of this study are presentation of basic data referring to conventional post-harvest grain operations in rural area and suggestion of improving methods for the operations, and also finding out reasonable operating processes of the operations. The result of this study are follows; 1. Grain drying in-the-filed which is performed before threshing has major factors of grain loss during drying, and so should be restrained as possible. Combine harvesting system is recommended among other king of mechanized harvesting systems for restraining in-the-field drying and securing available labors for drying. 2. It is predicted that mechanical grain drying could be prevalent when combine harvesting is taken place. Recommended grain drier for pre-combine harvesting system and for combine harvesting system is batch-type drier and circulating -type drier, respectively. 3. As existing farm storages for grain have insufficient spaces and offer poor conditions for grain storing , it is greatly needed to build up new storage which store only grains. And it is concluded that storing grain in community common storages in desirable. 4. Power supplying system for milling machinery in local milling plants, that a large capacity prime mover supplies power to 4 to 6 kinds of milling machinery simultaeously, should be converted to a system of several small capacity prime movers supplying power to each machiner y for the purpose of reducing extra consumption of energy. 5. Governmental grain, of which Korean farms produced, should be milled and stored in the local milling plant successively for the purpose of reducing transportation fee and stroing facilities. 6. Furture post-havest grain operations-drying, storing and milling should be periormed successively in he community common plant. And average optimum processing capacity of the plant is estimated about 300 metric ton of grain every year.

  • PDF

Harvesting Performance of the Prototype Small Combine for Buckwheat and Adlay

  • Yoo, Soonam;Lee, Changhoon;Lee, Beom Seob;Yun, Young Tae
    • Journal of Biosystems Engineering
    • /
    • 제43권4호
    • /
    • pp.320-330
    • /
    • 2018
  • Purpose: The aim of this study was to investigate the harvesting performance of a prototype small combine for buckwheat and adlay. Methods: The prototype small combine was designed and constructed. Its ratio of grain loss, ratio of output components in the grain outlet, and field capacity for harvesting buckwheat and adlay were analyzed through field tests. Results: The prototype small combine required a working width of about 0.6 to 0.7 m to harvest buckwheat. The maximum travel speed was about 0.36 m/. The total ratio of grain loss was about 21.6%, which consisted of 8.8% at the header and 12.8% at the dust outlet. The grain and the material other than grain (MOG) ratios at the grain outlet were 94.1% and 5.9% respectively. In the case of adlay harvest, the maximum working width was about 1.2 m, that is, two rows. The range of maximum travel speed was about 0.45 to 0.46 m/s. When adlay was harvested in one row, the total ratio of grain loss ranged from 36.3 to 42.8% according to the cutting height. The cutting height of 30 cm resulted in a higher total ratio of grain loss than 60 cm and 90 cm. When the cutting height was 60 cm, there was no significant change in the total ratio of grain loss according to the number of working rows and the stage of the primary transmission shift. The total ratio of grain loss ranged from 35.2 to 37.7%. The grain and the MOG ratios at the grain outlet ranged from 93.1 to 95.8% and from 4.2 to 6.9%, respectively. No significant difference was observed in relation to cutting height, number of working rows, and the stage of the primary transmission shift. Conclusions: The prototype small combine for harvesting miscellaneous cereal crops showed good potential for the efficient harvesting of buckwheat and adlay. However, to improve the harvesting performance, there seems to be a need to develop new crop varieties suitable for machine-based harvesting and improve the transmissions, reels, separation/cleaning systems.

AUTOMATIC GUIDANCE SYSTEM FOR COMBINE USING DGPS AND GYRO SENSOR

  • Park, C. H.;Kim, J. M.;M. J. NahmGung
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.II
    • /
    • pp.333-343
    • /
    • 2000
  • An automatic guidance system for combine was designed to harvest paddy rice by following a predetermined path. The automatic guidance system consisted of DGPS to locate position of combine, a gyro sensor system to measure heading angle, ultrasonic sensors to detect obstacles, a hydraulic system, microcomputer as a controller, and I/O interface system. Hydraulic cylinders and valves were installed to control movement of the combine. The heading angle and the position of the combine, and ultrasonic measurements from edge were used as the inputs of the controller. The operating position of hydraulic cylinder was determined as output of the controller. The automatic guidance system was evaluated at the 45-m straight path by changing the posture of the combine. The average RMS errors were 14.0 cm without offset and 15.0 cm with 1-m offset. The DGPS provided accurate position information within the limited error to guide the combine in the field. The results showed that the automatic guidance system could guide the combine autonomously in the paddy field when the posture of the combine was changed.

  • PDF

수호손실과 도정수율을 기초로 한 벼의 수호적기결정에 관한 연구 (Determination of Optimum Timing of Paddy Harvesting Based on Grain Loss and Milling Quality)

  • 강화석;이종호;정창주
    • Journal of Biosystems Engineering
    • /
    • 제2권1호
    • /
    • pp.56-80
    • /
    • 1977
  • This experimental work was conducted in order to find out the optimum time of harvest of Japonica-type (Akibare) and Indica-type(Tong-il) rice variety for three harvesting systems by investigating the harvesting losses and milling quality. The study was also concerned about the nature and amount of grain losses incurred during the each sequence of post-harvest technologies, and based on these result, a modification of existing systems giving a minimum grain loss was attempted. Binder, combine, and traditional systems were tested in this study and five grain moisture levels were disposed according to the decrease of grain moisture . The results are summarized as follows ; 1. The total losses of Akibare variety were ranged from 1.1 to 1.5 per cent for the traditional harvesting system , 2.1 to 4.8 per cent for the harvesting system by use of binder, and 2.8 to 4.3 per cent for the harvesting system by use of combine as the grain moisture content was reduced from 24 to 15 percent. Milling recovery of the harvesting system by use of binder, 74.8 ∼75.7 percent, was a little higher as it was compared to that of traditional harvesting system, 74.3 ∼75.0per cent, and that of the harvesting system by use of combine, 73.8 ∼75.0 per cent. Head rice recovery of mechanically dried paddy samples was higher than that of sun-dried paddy samples. 2. The total losses of Tong-il variety were ranged from 3.8 to 5.0 per cent for the traditional harvesting system, 5.2 to 10.0 percent for the system by use of binder, and 3.0 to 5.0 per cent for the system by use of combine as the grain moisture was reduced from 28 to 16 per cent. 3. Milling recovery of Tong-il variety harvested by the traditional harvesting system was 72.3 ∼73.6 percent and it was lower when compared to that of 72.3∼75.0 per cent harvested by binder, and 73.0∼74.6 percent harvested by combine. 4. Head rice recovery of Tong-il variety harvested by the traditional harvesting system (58.

  • PDF

Optimization of Wheat Harvest

  • Kim, S.H.;Kolaric, W.J.
    • Agricultural and Biosystems Engineering
    • /
    • 제1권1호
    • /
    • pp.7-15
    • /
    • 2000
  • Optimization was considered from three perspectives : minimum grain loss, minimum damaged grain loss, and minimum power consumption. Factors affecting combine performance were classified as control, adjustable, and environmental. Control and adjustable factors were optimized by the parameter design developed by Taguchi. Environmental factors were used as input for optimization. Optimum range for control and adjustable factors are presented. Parameter design was adequate to obtain the optimum levels of control factors and optimum range of adjustable factors.

  • PDF

OPTIMIZATION OF WHEAT HARVEST

  • Kim, Sang-hun-;William-J.Kolaric;Kang, Whoa-Seug
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.714-726
    • /
    • 1993
  • Optimization was considered from three perspectives ; minimum grain loss, minimum damaged grain loss, and minimum power consumption. Factors affecting combine performance were classified as control , adjustable , and environmental. Control and adjustable factors were optimized by the parameter design developed by Tajuchi. Environmental factors were used as input for optimization Optimum range for control and adjustable factors are presented. Parameter design was adequate to obtain the optimum levels of control factors and optimum range of adjustable factors.

  • PDF