• Title/Summary/Keyword: Combine harvest

Search Result 33, Processing Time 0.029 seconds

A Study on the Trnasportation System of Paddy After Combine Harvest (벼 수확후의 운반처리체계에 관한 연구)

  • 김학주;이규승
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.399-406
    • /
    • 1999
  • This study was conducted to investigate the labor requirements and transportation cost of paddy for the different harvest and transportation systems for obtaining a basic reference to the improvement of present harvest-transportation systems. One hundred and eighty five farm households with sack type combine harvester and thirty farm households with bulk type combine harvester were surveyed for thirty counties from eight provinces except jeju and also eleven Rice Processing Complex were covered for this survey. This survey was carried from 8th. October 1997 to 5th. November 1997. For the labor requirements, bulk trailer system require 6.8th/ha, 10.3/ha for sack harvest-tractor trailer, and 8.8h/ha for bulk harvest-container bag. The machinery utilization cost for the different paddy harvest-transportation systems, combine sack harvest-tractor trailer system is 282 thousand won/ha, and most economical compared with other systems. Combine bulk harvest with tractor system was 416 thousands won/ha and combine bulk harvest with container bag system was 446 thousands won/ha. In order to propagate bulk harvest-transportation system, a proper bulk transportation means with considering road condition in the paddy field and paddy size should be developed, and considering cycle time it appeared that the proper capacity of bulk container was 3.5ton at the present.

  • PDF

Combine Harvest Scheduling Program for Rough Rice using Max-coverage Algorithm

  • Lee, Hyo-Jai;Kim, Oui-Woung;Kim, Hoon;Han, Jae-Woong
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.18-24
    • /
    • 2013
  • Purpose: This study was conducted to develop an optimal combine scheduling program using Max-Coverage algorithm which derives the maximum efficiency for a specific location in harvest seasons. Methods: The combine scheduling program was operated with information about combine specification and farmland. Four operating types (Max-Coverage algorithm type, Boustrophedon path type, max quality value type, and max area type) were selected to compare quality and working capacity. Result: The working time of Max-Coverage algorithm type was shorter than others, and the total quality value of Max-Coverage algorithm and max quality value type were higher than others. Conclusion: The developed combine scheduling program using Max-Coverage algorithm will provide optimal operation and maximum quality in a limited area and time.

Effects of Combine Harvesting and Drying Methods on Grain Quality in Rice Cultivars (벼 품종의 콤바인 수확과 건조방법에 따른 미입질의 변화)

  • Lee, Ho-Jin;Seo, Jong-Ho;Lee, Un-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.3
    • /
    • pp.282-286
    • /
    • 1990
  • Currently, mechanization and automation have been introduced into rice harvest and drying process due to the shortage of man power. After rice cultivars, Chucheong and Milyang #23 were cutted with manual method (H1) or harvested with combine (H2), the threshed grain were dried in natural sun-drying (D1), in natural air in-bin system (D2), or in contineous hot-air drier (D3). We have evaluated grain losses, operation hour, and grain quality on each harvest and drying methods. Shattering loss during harvesting with combine was not dirfered significant from that of manual method, but threshing loss was 1.2% higher in combine harvest than in manual. Operation hours required for combine harvest was 3.5 times faster than for manual, even without head threshing. There was a significant difference bel ween cultivars in harvesting loss, which Milyang #23, a Tongil rice had two times more grain loss than Chucheong, a Japonica rice. Drying hours required to reduce to 14% grain moisture content were ten days for H1D1, 5-9 days for H2 D1, 2-3 days for H2D2, and only 15 hours for H2D3, respectively. In grain quality, complete grain ratio after dehulling was decreased about four percent in H2D3 compared to H1D1. while it was lower in Milyang #23 than in Chucheong, Hot-air drier increased occurence of cracked and broken grain. Combine harvest increased significantly these incomplete grain ratio of :Milyang #23, but not Chucheong.

  • PDF

Development of a Rapeseed Reaping Equipment Attachable to a Conventional Combine (II) - Evaluation of Feasibility in Rapeseed Harvesting - (보통형 콤바인 부착용 유채 예취장치 개발(II) - 유채 수확 적응성 평가 -)

  • Lee, Choung-Keun;Choi, Yong;Jang, Young-Seok;Jung, Young-Su;Lee, Seung-Kyu;Lee, Wang-Don
    • Journal of Biosystems Engineering
    • /
    • v.34 no.1
    • /
    • pp.21-29
    • /
    • 2009
  • A rapeseed reaping equipment attachable to a conventional combine was developed in order to harvest rapeseed for bio-diesel materials. This study was carried out to measure the harvest feasibility of a prototype combine in rapeseed fields. Grain, stem and pod flow rate, grain qualities (whole kernel, damaged kernel, unhulled kernel, material-other-than-grain) and grain loss rates (header, threshing, separation) were investigated in each field test. As the result of the fold test, the average grain flow rates of SUNMANG and MS varieties showed 1,430 kg/h and 2,038 kg/h, respectively. The average stem and pod flow rates showed 3,443 kg/h and 6,596 kg/h, respectively. In each working speed, the average whole kernel rate and the material-other-than-grain showed 99.9% and below 0.08%, respectively. In the average grain loss, the rates showed 5.66% in case of SUNMANG and 5.94% in MS. Header loss was higher than other parts for SUNMANG. However, threshing loss was relatively higher than other parts for MS. Header loss rate due to side cutter knifes, however, was not so high when compared with a grain loss due to the cutter bar. Effective field capacity and field efficiency of the prototype combine showed 0.389 ha/h and 44%, respectively. Comparison of customary combine with the prototype combine through field test demonstrated that the header loss was reduced by 69.3% when the prototype combine was used.

Improvement of System for Grain Drying, Storing , and Processing in Rural Area (농촌의 주곡 건조.저장.가공 작업체계 개선확립)

  • 서상용;이승규;김용환
    • Journal of Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.33-46
    • /
    • 1978
  • To get the goal of self-supply of food grain, improvement of post-harvest grain operations in rural area is under consideration as an important task of agriculture in Korea. This is study is focused on elimination of losses and deteriorations of grain and reduction of labour requirements and funds for post-harvest grain operations. The purpose of this study are presentation of basic data referring to conventional post-harvest grain operations in rural area and suggestion of improving methods for the operations, and also finding out reasonable operating processes of the operations. The result of this study are follows; 1. Grain drying in-the-filed which is performed before threshing has major factors of grain loss during drying, and so should be restrained as possible. Combine harvesting system is recommended among other king of mechanized harvesting systems for restraining in-the-field drying and securing available labors for drying. 2. It is predicted that mechanical grain drying could be prevalent when combine harvesting is taken place. Recommended grain drier for pre-combine harvesting system and for combine harvesting system is batch-type drier and circulating -type drier, respectively. 3. As existing farm storages for grain have insufficient spaces and offer poor conditions for grain storing , it is greatly needed to build up new storage which store only grains. And it is concluded that storing grain in community common storages in desirable. 4. Power supplying system for milling machinery in local milling plants, that a large capacity prime mover supplies power to 4 to 6 kinds of milling machinery simultaeously, should be converted to a system of several small capacity prime movers supplying power to each machiner y for the purpose of reducing extra consumption of energy. 5. Governmental grain, of which Korean farms produced, should be milled and stored in the local milling plant successively for the purpose of reducing transportation fee and stroing facilities. 6. Furture post-havest grain operations-drying, storing and milling should be periormed successively in he community common plant. And average optimum processing capacity of the plant is estimated about 300 metric ton of grain every year.

  • PDF

Harvesting Performance of the Prototype Small Combine for Buckwheat and Adlay

  • Yoo, Soonam;Lee, Changhoon;Lee, Beom Seob;Yun, Young Tae
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.320-330
    • /
    • 2018
  • Purpose: The aim of this study was to investigate the harvesting performance of a prototype small combine for buckwheat and adlay. Methods: The prototype small combine was designed and constructed. Its ratio of grain loss, ratio of output components in the grain outlet, and field capacity for harvesting buckwheat and adlay were analyzed through field tests. Results: The prototype small combine required a working width of about 0.6 to 0.7 m to harvest buckwheat. The maximum travel speed was about 0.36 m/. The total ratio of grain loss was about 21.6%, which consisted of 8.8% at the header and 12.8% at the dust outlet. The grain and the material other than grain (MOG) ratios at the grain outlet were 94.1% and 5.9% respectively. In the case of adlay harvest, the maximum working width was about 1.2 m, that is, two rows. The range of maximum travel speed was about 0.45 to 0.46 m/s. When adlay was harvested in one row, the total ratio of grain loss ranged from 36.3 to 42.8% according to the cutting height. The cutting height of 30 cm resulted in a higher total ratio of grain loss than 60 cm and 90 cm. When the cutting height was 60 cm, there was no significant change in the total ratio of grain loss according to the number of working rows and the stage of the primary transmission shift. The total ratio of grain loss ranged from 35.2 to 37.7%. The grain and the MOG ratios at the grain outlet ranged from 93.1 to 95.8% and from 4.2 to 6.9%, respectively. No significant difference was observed in relation to cutting height, number of working rows, and the stage of the primary transmission shift. Conclusions: The prototype small combine for harvesting miscellaneous cereal crops showed good potential for the efficient harvesting of buckwheat and adlay. However, to improve the harvesting performance, there seems to be a need to develop new crop varieties suitable for machine-based harvesting and improve the transmissions, reels, separation/cleaning systems.

AUTOMATIC GUIDANCE SYSTEM FOR COMBINE USING DGPS AND GYRO SENSOR

  • Park, C. H.;Kim, J. M.;M. J. NahmGung
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.333-343
    • /
    • 2000
  • An automatic guidance system for combine was designed to harvest paddy rice by following a predetermined path. The automatic guidance system consisted of DGPS to locate position of combine, a gyro sensor system to measure heading angle, ultrasonic sensors to detect obstacles, a hydraulic system, microcomputer as a controller, and I/O interface system. Hydraulic cylinders and valves were installed to control movement of the combine. The heading angle and the position of the combine, and ultrasonic measurements from edge were used as the inputs of the controller. The operating position of hydraulic cylinder was determined as output of the controller. The automatic guidance system was evaluated at the 45-m straight path by changing the posture of the combine. The average RMS errors were 14.0 cm without offset and 15.0 cm with 1-m offset. The DGPS provided accurate position information within the limited error to guide the combine in the field. The results showed that the automatic guidance system could guide the combine autonomously in the paddy field when the posture of the combine was changed.

  • PDF

Determination of Optimum Timing of Paddy Harvesting Based on Grain Loss and Milling Quality (수호손실과 도정수율을 기초로 한 벼의 수호적기결정에 관한 연구)

  • 강화석;이종호;정창주
    • Journal of Biosystems Engineering
    • /
    • v.2 no.1
    • /
    • pp.56-80
    • /
    • 1977
  • This experimental work was conducted in order to find out the optimum time of harvest of Japonica-type (Akibare) and Indica-type(Tong-il) rice variety for three harvesting systems by investigating the harvesting losses and milling quality. The study was also concerned about the nature and amount of grain losses incurred during the each sequence of post-harvest technologies, and based on these result, a modification of existing systems giving a minimum grain loss was attempted. Binder, combine, and traditional systems were tested in this study and five grain moisture levels were disposed according to the decrease of grain moisture . The results are summarized as follows ; 1. The total losses of Akibare variety were ranged from 1.1 to 1.5 per cent for the traditional harvesting system , 2.1 to 4.8 per cent for the harvesting system by use of binder, and 2.8 to 4.3 per cent for the harvesting system by use of combine as the grain moisture content was reduced from 24 to 15 percent. Milling recovery of the harvesting system by use of binder, 74.8 ∼75.7 percent, was a little higher as it was compared to that of traditional harvesting system, 74.3 ∼75.0per cent, and that of the harvesting system by use of combine, 73.8 ∼75.0 per cent. Head rice recovery of mechanically dried paddy samples was higher than that of sun-dried paddy samples. 2. The total losses of Tong-il variety were ranged from 3.8 to 5.0 per cent for the traditional harvesting system, 5.2 to 10.0 percent for the system by use of binder, and 3.0 to 5.0 per cent for the system by use of combine as the grain moisture was reduced from 28 to 16 per cent. 3. Milling recovery of Tong-il variety harvested by the traditional harvesting system was 72.3 ∼73.6 percent and it was lower when compared to that of 72.3∼75.0 per cent harvested by binder, and 73.0∼74.6 percent harvested by combine. 4. Head rice recovery of Tong-il variety harvested by the traditional harvesting system (58.

  • PDF

Optimization of Wheat Harvest

  • Kim, S.H.;Kolaric, W.J.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.7-15
    • /
    • 2000
  • Optimization was considered from three perspectives : minimum grain loss, minimum damaged grain loss, and minimum power consumption. Factors affecting combine performance were classified as control, adjustable, and environmental. Control and adjustable factors were optimized by the parameter design developed by Taguchi. Environmental factors were used as input for optimization. Optimum range for control and adjustable factors are presented. Parameter design was adequate to obtain the optimum levels of control factors and optimum range of adjustable factors.

  • PDF

OPTIMIZATION OF WHEAT HARVEST

  • Kim, Sang-hun-;William-J.Kolaric;Kang, Whoa-Seug
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.714-726
    • /
    • 1993
  • Optimization was considered from three perspectives ; minimum grain loss, minimum damaged grain loss, and minimum power consumption. Factors affecting combine performance were classified as control , adjustable , and environmental. Control and adjustable factors were optimized by the parameter design developed by Tajuchi. Environmental factors were used as input for optimization Optimum range for control and adjustable factors are presented. Parameter design was adequate to obtain the optimum levels of control factors and optimum range of adjustable factors.

  • PDF